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Surface ducts are formed by wind mixing at the sea surface and are a common feature in many
of the world’s oceans. These surface ducts have the effect of channeling acoustic energy for long
ranges. This paper, however, focuses on the energy that leaks out of the surface duct—paths that
are typically neglected by ray models. It is found that the leakage energy at lower frequencies
can be surprisingly strong so that a receiver in a ray-theory shadow zone is actually well
insonified. Furthermore, the leakage energy is refracted back into the duct where it may
dominate the ducted paths. Inside the duct, these two arrivals add up constructively or
destructively resulting in anomalously high or low acoustic levels in the surface duct relative to
a prediction that neglects the leaky arrival. Thus, a full-wave model is needed; however, certain
types of parabolic equations (PEs) fail for these problems because they scramble the phases of
the two dominant arrivals. The same mechanism that causes the PEs to fail makes the problem
very sensitive to environmental data. For instance, a change in the mean duct speed of 0.5 m/s
can also produce large changes in the acoustic levels.

PACS numbers: 43.30.Bp, 43.30.Cq

INTRODUCTION

A common oceanographic feature is the so-called
mixed layer that results from wind-driven mixing at the
ocean surface. An introduction to the oceanographic and
acoustic characteristics of surface ducts may be found in
Ref. 1. A key feature of mixed layers is that they lead to a
surface duct that traps acoustic energy. An example of
such a problem is shown in Fig. 1. The sound-speed profile
on the left shows a typical deep-water profile with the
mixed layer leading to a small upward-refracting zone in
the upper 250 m. The ray trace for a source in the surface
duct (at a depth of 25 m) illustrates the two families of
rays for such a source: First, there are rays that are trapped
within the surface duct; second, there are rays with a
steeper take-off angle that escape from the duct and form a
convergence zone paitern with energy cycling up and down
the channel and refocusing near the surface about every 50
km. A plot of the transmission loss at 80 Hz shown in Fig.
2 confirms the trapping effect of the surface duct. We also
observe that there are bands of energy suggesting leakage
out of the surface duct.

These features of surface-duct propagation are by now
well known. Indeed, according to Urick? the acoustic ef-
fects of the surface duct were first studied by Steinberger in
1937. Since then, many other researchers have studied
surface-duct propagation. In the early 1970s an extensive
set of CW experiments was performed in the Surface-Duct
Sonar Measurements (SUDS) program.’ The issue of duct
leakage is discussed in Refs. 4-8. Freese® discusses an in-
teresting set of experimental results for impulsive sources
in surface ducts. That work illustrates experimentally and

1510 J. Acoust. Soc. Am. 94 (3). Pt. 1, Sept. 1993

numerically the importance of leakage in and out of the
surface duct in a case similar to our own.

Our interest in this problem has been stimulated by an
anomalous numerical result obtained in a routine modeling
study. The profile that manifested the numerical problems
is, in fact, that shown in Fig. 1.

The remainder of this paper is organized as follows. In
Sec. I we present a set of numerical results using different
models. The striking feature of these results is that they are
derived from models in which most researchers would have
had a high degree of confidence, yet there are large dis-
crepancics in the results. In Sec. 11 we study this problem
in the time domain using an impulsive signal. These results
lead us to a clear physical interpretation of the propagation
paths. With this insight we explain in Sec. ITI the difficult
requirements imposed on any numerical model and conse-
quently why certain parabolic equations (PEs) fail and
others do not. In Sec. IV we end with a summary and
conclusions.

I. NUMERICAL RESULTS

Figure 3 shows the numerical results that prompted
this study. The solid line in all the plots is a reference
solution obtained using the SNAP normal mode code.'
This solution agrees to within a line width with solutions
obtained using KRAKEN"! and a spectral integral code.
The receiver depth for these calculations was 100 m. The
dashed line in Fig. 3(a) is the result obtained using the
Thomson—Chapman PE.'>'* The somewhat startling as-
pect of this result is that it shows a discrepancy reaching 15
dB. Furthermore, the error is not confined to a narrow
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FIG. 1. Sound-speed profile and corresponding ray trace.

region but averages about 7 dB over the entire region be-
tween the first and second convergence zones. A concern
that often arises with PEs is whether they are sufficiently
wide-angle. However, in this case the propagating rays
cover a narrow spectrum of about =+15°. Figure 3(b)
shows the result obtained using the LOGPE,'* which also
shows a disturbingly large error.

This unexpected error became even more mysterious
when we ran the standard Tappert-Hardin PE'>'® yielding
the excellent agreement shown in Fig. 3(c). This is the
original narrow-angle version introduced into underwater
acoustics in 1973. Today it has largely been replaced by
models such as the Thomson-Chapman PE or LOGPE
that have established a consistently better record in terms
of accuracy. The Tappert-Hardin PE has been extended to
wider angles by including additional terms in the Padé
series approximation to the square-root operator. One such
PE, the Claerbout PE, yields the result shown in Fig. 3(d),
which also shows excellent agreement.

Il. TIME-DOMAIN INTERPRETATION

To understand the peculiarities of the transmission
loss results obtained using different PEs we performed
some broadband calculations. A simple wavelet was used
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for the source function and then observed on vertical and
horizantal “arrays™ positioned at different locations in the
waveguide.

The objective of looking at time-domain results was to
observe differences in the arrival structure with the differ-
ent PE models, thus obtaining clues to the possible failure
mechanism. Interestingly there were na visible differences
between the arrival structure as calculated by the four dif-
ferent PEs and the normal mode model. We will discuss
this apparent inconsistency later.

Figure 4 shows the predicted arrival structure for a
horizontal “array” with hydrophones spaced every 10 km
and within the surface duct. The pulse amplitudes are mul-
tiplied by range to compensate for geometrical spreading
and attenuation. The horizontal axis shows a reduced time
in which the pulses have been shifted in time based on an
average propagation speed of 1510 m/s. These calculations
were done by running the normal mode code over a sweep
of frequencies. The complex pressure fields were then
added up with a weighting factor based on the source spec-
trum to obtain the time series of the received signal (Fou-
rier synthesis).

The principal propagation paths are illustrated in Fig.
1. The first arrival corresponds to a ray trapped in the
surface duct. The ray is refracted in a part of the ocean
with a high average sound speed and therefore arrives first.
At a range of about 50 km we see a second arrival coming
in that corresponds to a convergence zone path. Interest-
ingly this arrival is present well past the actual conver-
gence zone. As indicated in Fig. 1, it is identified with a
“leaky CZ” path, that is, a ray path that leaks out of the
surface duct and then is refracted like an ordinary CZ
path. This duct-leakage phenomenon is well-known. An
important and seemingly unappreciated aspect of such
paths is that they can lead to an extremely strong arrival as
shown in the plot of Fig. 4. Note that the leaky CZ arrival
is actually stronger than the surface-duct arrival. Further-
more, we tend to think of the energy leaking out of the
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FIG. 2. Transmission loss for the mixed-layer profile.
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surface duct as if it simply leaves the waveguide while in
fact the leakage arrival is refracted by the water column
and can refocus at other ranges.

Finally, we observe that there is a third arrival show-
ing up at the second convergence zone (at about 100 km).
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FIG. 4. Arrival structure versus range for a receiver in the duct.
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This is, of course, the second cycle of the convergence zone
path. Beyond this range the arrival structure becomes in-
creasingly complicated, involving various combinations of
leaky and ducted paths.

A slightly different view is obtained if we sample the
field with a vertical “array” extending from the surface to
a depth of 1000 m and placed at a range of 80 km. The
resulting arrival structure is shown in Fig. 5. The trace for
the receiver in the surface duct (100 m) shows the pattern
we have already seen on the horizontal array. The first
arrival is a ducted path and the second arrival is a leaky CZ
path. As we go to deeper hydrophones we see the ducted
arrival becomes a leaky arrival. The leaky CZ, on the other
hand, splits into two arrivals—one coming to the receiver
from below and the other from above. Taking a different
view, we can say that the strong leaky CZ path observed in
the surface duct is obtained when those same two paths
coalesce.

With these and other glimpses of the field we obtain a
complete picture of the important propagation paths. We
can now observe that there is a stringent accuracy require-
ment for any propagation model: It must accurately pre-
dict the relative arrival times to within hundredths of a
second to give an accurate prediction in the region between
the first and second convergence zones (and beyond).
Within this region we have seen that there are two arrivals
of comparable strength. Thus, if we look at a single fre-
quency the relative phase leads to constructive or destruc-
tive interference depending on the details of the profile.

At a center frequency of 80 Hz, it takes only a differ-
ence of about 6 ms in the travel time to shift the phase by
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FIG. 5. Arrival structure versus depth in the second convergence zone.

180°. Such differences in arrival time are not visible on the
scales used for plotting the time series, which explains why
there were no visible differences between the times series
plots of the PEs.

Of course, ocean acoustic problems are characterized
by multipath propagation. What is then unique about this
particular multipath case? The answer is that the two paths
involved maintain a nearly constant difference in travel
time throughout the region from the first to the second
convergence zone. (This may be seen geometrically from
Fig. 1.) As a result, the transmission loss shows a smooth
behavior. Furthermore, any phase error affects that whole
region almost uniformly. It is this mechanism that gives
the impression that energy levels are low in the surface
duct in some of the PE results. It is also this mechanism
that makes the PE error so unexpected. That is, PEs are
well-known to generate phase errors. These errors are usu-
ally seen as erratic deviations in the pattern of the trans-
mission loss. The consistent level error is what is unex-
pected.

An interesting consequence of this explanation is that
the physical problem is itself very sensitive to small
changes. Thus, if we take our reliable normal mode model
and make a small change in the mixed-layer speed we can
induce a large change in the transmission loss. For in-
stance, in Fig. 6 we have increased the speed by just 0.5
m/s. The effect of this is to reduce the travel time for the
ducted arrival relative to that of the leaky CZ arrival. The
solid and dotted curves show the enormous change in
transmission loss that results. We should emphasize that
what we are looking at here is not a model error but the
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FIG. 6. Transmission loss versus range in the second convergence zone.
( ), original problem; (---), perturbed problem.

extreme sensitivity of the results to small changes in the
environment.

lll. PE TYPES

The preceding section provided a fairly clear picture of
the accuracy requirements for any acoustic model: It must
be able to accurately predict the relative travel time of the
two important paths. The remaining mystery is why do
some of the PEs work and others not? After all, the PEs all
have phase errors so why should any of them work? In
brief, the answer is that the PEs can make serious phase
errors provided the same phase error is made for both of
the critical paths. In other words, it is the relative travel
time that is important, not the absolute travel time.

In Sec. I, we saw that the Tappert-Hardin PE and the
Claerbout PE both gave an accurate prediction. These PEs
are members of the wider class of Padé PEs. Let us recall
the derivation following the operator notation of Ref. 17.
The starting point is the Helmholtz equation for a
constant-density medium in cylindrical coordinates (#,2,3)
and for a harmonic point source of time dependence
exp( —iwt):

2 1 82
3—,§+;§‘;’+a—z’i+kén2p=o, (1

where we have assumed azimuthal symmetry and hence no
dependence on the ¥ coordinate. Here, p(#,z) is the acous-
tic pressure, ko=w/c, is a reference wave number, and
n(rz)=cy/c(rz) is the index of refraction. We next intro-
duce a new dependent variable u(r,z) with the cylindrical
spreading removed,

p(r2)=u(rz)/ (2)
and make the far-field approximation to obtain

(P+ KPP u=0, 3)
where

a e, .
P=o, 0= k—ga—zz-i-n. (4)
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The next step is to factor this equation into two compo-
nents, an outgoing and an incoming wave component, ac-
cording to

(P—ikoQ) (P+ikoQ)u—iko[ P,Qlu=0, (5)
where
[P,Q]u=PQu—QPu (6)

is the so-called commutator of the operators P and Q. For
range-independent media where n=n(z), the two opera-
tors commute and the last term in Eq. (5) is equal to zero.
Selecting only the outgoing wave component, we then ob-
tain

Pu:ikoQu

or
du " 1 ) ;
Fr 0( k?,a?—l—n u. (7

This equation is a genuine one-way wave equation, that for
range-independent environments invokes only the far-field
approximation. However, to use it we must interpret the
square-root operator that occurs. For convenience we write
Q given by Eq. (4) as

0=11+q, ®)

where

18
q=%g£_5+n —1. 9)

A solvable parabolic wave equation is now obtained by
making a Taylor series expansion of Q:

2 3

q9 ¢ q
Jl+g= 453+t (10)

If we retain only the first two terms we get the following
approximate form of the square-root operator:
& n2—1

Q_1+2—1+2k2—zz+

Substituting this expression for Q into the generalized one-
way wave equation [Eq. (7)], we obtain

Qu iky (1 & )
a2 (Eg?*" + )“’

(11)

(12)

which is the standard PE. [Although, for numerical rea-
sons the standard PE is often written in terms of a new
variable Y=u exp(—ikyr).]

The above derivation based on a series expansion of
the square-root operator Q suggests many ways to formu-
late better PE approximations with a wide-angle capability.
The wide-angle Claerbout'® equation uses

14-0.75¢

VI+a=~11555,

Still higher-order expansions are obtained using more
terms in the Padé series expansion:

(13)
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241
JT+g=1+ 2 1+b Ty o +o@™h, (14)
where / is the number of terms in the expansion. The co-
efficients are computed to yield a good approximation to
the square root. One such choice is

2 jm b jm
%1=27 41 50 (21-+-1 r D=0 (21+1)‘
This general Padé series approach was proposed by Bam-
berger et al.'® and first implemented by Collins.?° It is in-
structive to write out this expansion when including one

term only from the sum:

et 0.50q
t9=1+70255"

which is easily seen to be equivalent to the expansion given
in Eq. (13). Thus, the Padé series includes as a special case
the Claerbout PE form.

Substituting the general Padé series approximation to
the square root of Eq. (14) into the one-way equation of
Eq. (7) we obtain the generalized very-wide-angle PE

du

30§ [0

1 & !
|l
0

which can be solved by finite-difference or finite-element
techniques.

A key point about the Padé PE family is that the PE
modes are closely tied to the Helmholtz modes. Let Z,,(z)
and %,, denote the eigenfunctions and eigenvalues for the
equation

2

d
2 Zn (2) 4 (kgn* — k%) Z,,(2) =0.

(15)

)u, (16)

(17)

We assume the boundary conditions are such that the
eigenfunctions form a complete set. Then, if we seek a
solution of the Padé PE in the form

u(r2)= 2. Zn(2)R(r),

m=1

(18)

and make use of the orthogonality of the eigenfunctions,
we find

- i a; (k. /kg—1) R0,
m(r)—l 0( +J . 1+b]](k2/k2—1) r
(19)

Therefore,

! K /ka—1)
R, (r) <exp i 0 ) }

’k°(1+ Zl 1+b,,(-5 /1)

(20)

Note that if we pass to the limit /- « the Padé series
converges to 1+ (kzm/Po— 1) = k,,/ky and we obtain

R, (r) <exp(ik,r). (21)
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Similarly, we can use these same eigenfunctions to find a
solution of the original Helmholtz equation. We substitute
in Eq. (1) and obtain the well-known normal mode repre-
sentation of the solution

pr)= X Z (2)Rp(r), (22)
m=1
where
REE(r) o« HSV (K,r). (23)

Taking the far-field approximation to the Hankel function
and removing the cylindrical spreading term, we obtain

WB(rz)= X Z(2)REE(r), (24)
m=1
where
RgE(r) «exp(ik,,r). (25)

Thus, the Helmholtz equation and the Padé PE have iden-
tical depth eigenfunctions Z,,(z). However, comparing the
Padé range term given in Eq. (20) to the Helmholtz result
given in Eq. (25) we see that there is a phase error that
goes to zero as the number of terms in the Padé series goes
to infinity. This extends a result obtained by McDaniel’!
for the standard PE.

The significance of this is the following. The two paths
that contribute in the surface duct are associated with
points in the k spectrum that are very near to each other.
That is, the rays for the two paths have nearly identical
take-off angles and may be associated with a single mode in
the modal sum. Furthermore, Eq. (20) shows that the
phase error of the Padé PE is a constant function of depth
for an individual mode. Thus, the phase errors are nearly
identical for the two paths and the Padé family of PEs does
an excellent job of predicting the interference within the
surface duct.

The remaining question is why do the Thomson-
Chapman PE and the LOGPE do poorly on this problem.
We have just seen that the Padé family of PEs have a
special angle-sensitive error that allows them to work.
Conversely, it is not hard to demonstrate that both the
Thomson-Chapman PE and the LOGPE induce phase er-
rors along a ray path that depend not simply on the take-
off angle of the ray, but on the particular characteristics of
the medium that the ray passes through. Since the phase
errors of the two paths are not locked, then the individual
phases must be propagated with extremely high accuracy.

Parabolic equation models that are not members of the
Padé family may still give the correct result for such prob-
lems if they are tuned to provide the relative phase of the
arrivals correctly. Indeed if the reference sound speed ¢ is
chosen appropriately, the Thomson—-Chapman PE will give
the correct result. For the moment, the only way to choose
this parameter is via an intermodel comparison, which
clearly is not helpful.

1515 J. Acoust. Soc. Am,, Vol. 94, No. 3, Pt. 1, Sept. 1993

IV. SUMMARY

We find several interesting features of surface-duct
propagation with important implications for numerical
modeling. First, the leakage energy that is often ignored
can be surprisingly strong at lower frequencies. Second, it
stays in the waveguide refracting up and down the ocean
channel and forming a leaky CZ arrival. After the first
convergence zone we find that the field is composed of two
arrivals: a classical ducted arrival and the leaky CZ arrival.
An accurate model prediction requires an accurate predic-
tion of the relative phase of these two arrivals. This poses
a severe accuracy requirement on the computer model as
well as a severe accuracy requirement in terms of environ-
mental knowledge.

The importance of this interference effect depends crit-
ically on the way the data are processed. Thus, as discussed
earlier, the small errors in the relative travel times were not
visible in the time series plots produced by the PEs. Simi-
larly, for band-averaged transmission loss the relative
phases are less important so there is less sensitivity to the
environmental knowledge.

Another interesting implication of this study is that
traditional ray models that neglect the leaky arrival alto-
gether will perform poorly under these conditions. These
results have important implications for sonar system mod-
eling. A source in the ray-theory shadow zone may actu-
ally insonify the surface duct quite effectively. Similarly, a
receiver in the shadow zone may sense a strong field from
a source in the surface duct.
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