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Fast-field programs (FFPs) have emerged as an important toal for predicting transmission
loss in an ocean waveguide. Such models have been primarily used for time-harmonic sources;
however, pulses or other broadband sources may be treated by Fourier synthesis. A new
technique is developed that provides a direct solution by marching the solution forward in
time. As an example of the method, a pulse incident on an interface between two homogeneous
half-spaces is considered. Snapshots of the pulse in time illustrate graphically the effects on the
reflected and transmitted waves. Second, an interesting hyperbolic cosine profile is considered

that leads to repeated focusing as the pulse propagates out in range.

PACS numbers: 43.30.Bp, 43.20.Mv

INTRODUCTION

Models for predicting the sound level due to a tire-
harmonic source in ocean acoustic waveguides have reached
a high level of development. Given the time-harmonic
source function, the original wave equation is reduced to a
Helmholtz equation. Direct solution by finite elements or
finite differences is seldom used; however, most problems
can be treated adequately using parabolic equation (PE),
normal mode (NM), fast-field program (FFP), or ray/
beam techniques, depending on the particular approxima-
tions that can be made for the problem under consideration.

Our interest here turns to problems involving arbitrary
source time series. Given the high state of development of
codes for time-harmonic sources, one obvious thing to do is
simply run the time-harmonic models for a number of fre-
quencies and combine the resulting solutions with the
weighting and phasing implied by the source function. In
fact, a recently developed package exists which does exactly
this and has been applied successfully to a wide variety of
ocean acoustic prablems.'

The alternative is to develop new models that deal di-
rectly with the wave equation producing a solution in the
time domain without Fourier synthesis. A time-domain for-
mulation of the PE was developed by McDonald and Kuper-
man,” and applied to both linear and nonlinear problems in
ocean acoustics. This approach has been extended by Col-
lins® to handle wide-angle problems with attenuation. The
appeal of this approach is that it bypasses the extra steps of

"Fourier decomposing the source and synthesizing the field.
At present, it is unclear if there is a gain or loss in speed by
working directly in the time domain.

In this paper, we shall develop a formulation of the fast-
field program that is marched directly in the time domain.
The technique is analogous to that used by Alekseyev and
Mikhaylenko® for Lamb’s problem and extended to more
general seismic problems by Olson ef al.5 The basic equa-
tions are developed in Sec. 11, and a numerical discretization
is described in Sec. III. Some extensions are developed in
Sec. IV to handle a pulse-centered coordinate system, an
angle-limited source, and attenuation. In Sec. V, examples of
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the method are presented, including (1) a pulse propagating
in free space, (2) a simple head-wave problem, and (3) a
refracting problem with a hyperbolic cosine profile.

I. GOVERNING EQUATIONS

The problem we consider is that of calculating the re-
sponse to an isotropic point source in a stratified (i.e., range-
independent) acoustic medium. The scenario is indicated
schematically in Fig. 1. Within a layer the solution is gov-
erned by the acoustic wave equation

1 1 ()
v-[ Lvpl— = — S(z—z,r), (1
(p P) pcz(z)P" . ( ), (1)
where p(r,z,t) is the acoustic pressure as a function of depth
z, range r, and time ¢, In addition, s(¢) is the isotropic point
source, p(z) is the density, and ¢(z) is the sound speed. To
completely specify the problem, we require some boundary
and initial conditions. We assume that the surface is a pres-
sure-release boundary and that at some sufficiently great
depth D, the boundary can be treated as perfectly rigid:

P("’OJ) = 0) Pz (V,D,f) =0 (2)
Furthermore, we require
p(rz,t), outgoingasr— co. 3

Finally, we assume that initially the medium is quiescent;
ie.,

p{r,z,O) =p (rz,0) =0. 4)
When discontinuous interfaces are present, the wave equa-
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FIG. 1. Schematic of the range-independent environmental scenario.

© 1990 Acoustical Society of America 2013



tion applies within each smooth layer, and interface condi-
tions requiring continuity of pressure and normal displace-
ment are imposed.

The time-domain FFP is obtained by applying a Four-
ier—Bessel transform (in range) to Eq. (1). Thatis, we write

Plkzt) = Lm p(rz,t)ly(kr)rdr, (5)

which leads to

2(LB)_ ¥,
Jz\ p Oz P

together with the boundary and initial conditions
pr08) =p, (D) =0, p(rz0)=p,(rz0)=0. (7)

—s(8)8(z—2z,),
(6)

1 A —
= pcz(z) Py =

Equations (6) and (7) are the governing equations for
the time-marched FFP. If we were to go one step further and
factor out an ™ time dependence, we would obtain the usual
equations for the time-harmonic FFP.*

We observe that for any fixed &, Eq. (6) assumes the
form of a vibrating string embedded in an elastic mem-
brane.” (It is also a special case of a Klein—Gordon equation
in quantum mechanics.) The parameter k then governs the
restoring force of the surrounding elastic medium so that for
% = Owe obtain the familiar equation for a vibrating string in
free space.

These equations are solved for a sequence of & values,
and then the pressure is evaluated using the inverse Fourier—
Bessel transform:

plrzt) = I Plhz)o(kr)k dk. ®)
0

For a line source one need only replace the Bessel transform
by an ordinary Fourier transform.

Il. NUMERICAL ALGORITHM

Numerically, the problem is composed of two parts: the
construction of the kernel p(k,z,¢) and the evaluation of the
Fourier-Bessel transform. We shall describe each of these
two steps in more detail.

A. Evaluation of the kernel

In order to discretize Eq. (6), we employ finite elements
in depth and finite differences in time. Thus we seek a solu-
tion

‘a(z:‘;k} == E pi(tk)d, (2), (9

i=1

where ¢,(z) is the familiar linear shape function (“hat™

shaped):

i:.z_ii’ forzf__l (2(2,',
b
; = - 10
pi(2)=\z41—2 rmeaEr.. (10)
hi+ ]
0, else,
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where A, =z, — z;_, denotes the thickness of the ith ele-
ment.

The details of what follows may be obtained from stan-
dard finite-element texts such as Refs. 8 and 9. One finds that
the nodal pressures p;(r) satisfy an equation of the form

Kp —Mp,, =s(1), (11)
where p denotes the vector of nodal pressures. In addition,
M and K are, respectively, the global mass and stiffness ma-

trix obtained by summing the contributions of clemental
mass and stiffness matrices, given by

E E
K=‘; L(K,), M=% L(M,). (12)

e= 1
Here, L(-) is a locator function which maps a 2 X 2 element
matrix into the appropriate position in the global matrix.
The elemental matrices are given by

ol k2 =
K, = 1 [ 1 1] +h, l—-a a]
hcp‘ -1 l @' a Ij—ao

and

h, [3—-« a]
a 3—al’

6p‘c:
If interfaces are present where the density or sound speed is
discontinuous, the interface conditions of continuity of pres-
sure and normal displacement are automatically imposed in
this finite-element discretization.
For the time discretization, we employ the following
finite-difference approximation:
K[Bp/*'+ (1—-28p'+ 8’ "]
M pf""_lp}_}_pj—l -
(an?
where p/ denotes the vector of nodal pressures at time step j.
A Dirichlet boundary condition is easily imposed during the
time marching by simply zeroing out the first or last compo-
nent of the pressure vector. If no action is taken, then the
Neumann boundary condition is the natural (automatically
imposed ) boundary condition.
The above discretization allows for two free parameters,
a and /3, which control the “consistency” and the “explicit-
ness.” Thus, choosing («, #) = (0,0), we obtain a lumped
mass matrix and a fully explicit time integrator. This is con-
venient for parallel or pipelined computer architectures. In

the Appendix we show that the explicit integrator is stable
for

8/, (13)

At <11/ (B2)? + Kk 774].

The (a. ) = (1,0.25) scheme is the consistent mass
matrix combined with a trapezoidal time integrator. Every
step requires the inversion of a tridiagonal matrix; however,
(as shown in the Appendix), the method has the advantage
of being unconditionally stable. We use this scheme for the
advective problem which is described later.

B. Evaluation of the spectral integral

As in the standard FFP, we shall take advantage of an
FFT to evaluate the spectral integral at a number of points in
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range. This technique was apparently first suggested by
Marsh and Elam and developed for transmission loss model-
ing by DiNapoli. See Ref. 10 and references contained there-
in.

In order to obtain a suitable form, we replace the Bessel
function by its asymptotic approximation and truncate the
integral at some finite value. Thus we obtain

plrat) = f " btz Iy (kr)k dk
(1}

K max
szJ pk,z,t) cos(kr — m/4)Jk dk. (15)
mr JK,

(14)

min

The value of K, is chosen to sample the highest spatial
frequency in the problem. Thus, if the source is bandlimited
with upper frequency f,,.,, then the shortest wavelength is
Coin/fnax» Where ¢, is the minimum sound speed present in
the problem. So we set K., = 207fp.y/Cmin to ensure that
the pulse is adequately sampled in space. Finer sampling of
the pressure field can be obtained by increasing K., ; how-
ever, for |k|>K,,, the kernel essentially vanishes and
should simply be zeroed out. Conversely, K, is governed
by the longest wavelength and for problems with a low-fre-
quency cutoff can be set at K., = 27711, /Crmax -

Unlike the time-harmonic FFP, this integral can nor-
mally be performed directly on the real axis. This is because
the resulting pressure field is typically limited in space so
that the kernel is bandlimited. Thus the kernel is evaluated
- fork; = K, +jAk, where Ak = 27/R,,,, and R, is the
maximum range to which the pulse will propagate before the
calculation is terminated.

The FFT is efficient for problems where the field is de-
sired at many ranges, e.g., for snapshots. When the field is
needed at very few points (e.g., for calculating the received
time series on a vertical array), we apply the trapezoidal
method directly.

Ill. EXTENSIONS
A. Pulse-centered coordinates

For certain kinds of problems, the computation time
can be greatly reduced by setting up a coordinate system that
moves with the pulse. This technique, applied successfully
by McDonald and Kuperman? for the time-domain parabol-
ic equation model, is especially useful when there is a spatial-
ly confined pulse moving with a roughly constant velocity.
This is a case that is not uncommon for ocean acoustic prob-
lems.

There are two advantages which are derived from using
a pulse-centered coordinate system. The first is that the

“number of k-space points is reduced because the pulse occu-
pies a narror range window. The second is that the accuracy
of the time integration increases because in the moving frame
the dependent variables evolve more gradually.

The first advantage seems at first trivial to realize. We
assume that the pulse is confined to some range window
[ Rein+Rrax |- From the usual sampling results, we find that
the required k-space sampling is reduced to Ak =27/
(Rmax - Rmin ).

Unfortunately, there is a complication. Because of the
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symmetry of the problem, what actually happens is that both
aleft- and right-traveling wave are generated. Assuming that
we are interested in only the right-traveling pulse, then we
must eliminate the left-traveling pulse to avoid folding
(aliasing) it into the window of the right-traveling pulse.
This can be done by modifying the source function so that it
contains only positive frequencies (terms of the form )
and then performing the spectral integral using only nega-
tive k values (terms of the form e = *7). Thus the solution is
represented as a sum of components of the form e/~ *”,
which represent right-traveling waves.

A single sideband source function can be calculated by
forming the so-called “pre-envelope” of the source, which is
given by

s, () =s(¢) + 3(1), (16)
where $(¢) is the Hilbert transform of s(¢), which is given by

5y =+ J 3D _ 4
T t—T

[The pre-envelope can also be calculated by forming the
Fourier transform of s(#), zeroing out the negative frequen-
cies and transforming back to the time domain.] The result-
ing source function is complex so that it is then necessary to
perform the time marching using complex arithmetic.

Finally, the spatial transform is performed using only
negative k values as follows:

K nax
p(rzt) = /—1— Re[ plkztye ="k dk.
21r Jk. .

(18)

In order to realize the second feature of actually doing
the numerical integration in the moving frame, we introduce
the pulse-centered coordinate system R = r — V1, where Vis
the velocity of the moving reference frame. We take as a
definition

Kmul
plrat) = /LI plkzye” Ok dk,  (19)
21r Jk,

(17)

where p(k,z,t) satisfies Eq. (6). We now seek the equation
for an analogous function §(4,z,), which transformed yields
the pressure in the moving reference frame p(R,z,?). By de-
finition,

P(R,zt)

Kmax
=JZII ﬁ(k,z,t)e_i[k(R+ V,)A"'/“]\ﬁ(_ dk
MY JK, in
1 Kmax .
=\/2:.[ Glkzne =0 (E dk,
TV JK pin

where § = pe~ *¥'. Making this change of variables in Eq.
(6), we find that § must satisfy a convected form of the time-
marched FFP:

O (1) (I, B
az\ p oz p c’ pc> 1 pet
= —s(t)e *"5(z —z,). (2n

This equation can also be obtained by introducing the
change of variables R = r — F7 into the original wave equa-
tion to produce the following convected wave equation:

(20)
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V-[(1/p)Vq] — {1/[ pc*(2) 1} (g, — 2V, + Vqrz)
= — [s()/(R + V1)18(z —z,,R + V1). (22)

For a line source the Fourier transform then yields Eq. (21).
For a point source some care is required to take account of
the approximate Fourier—Bessel transform.

B. Angular filtering

An angle-limited source can be useful either for elimi-
nating bottom reflections or for reducing the CPU time in
problems where higher-angle energy is unimportant. In the
frequency-domain FFP this is accomplished by setting K ...,

= w/C,.., Where ¢, is the highest phase velocity to be
included. Thus the limits of integration are varied as a func-
tion of frequency. (The corresponding source angle can be
computed from Snell’s law.) In the time-marched FFP an
angle-limited source can be produced by low-pass filtering
the source function. The cutoff frequency is varied as a func-
tion of k according t0 @ ., = KCppax-

In experimental problems, the received time series is of-
ten filtered by the measurement apparatus. In such cases, it
is convenient to apply the corresponding filter directly to the
source time series. This reduces the spatial and temporal
sampling requirements for the numerical integration.

C. Attenuation

There is a great deal of uncertainty as to the “correct”
manner for treating dissipative effects in ocean sediments. A
fairly general form of a damped-wave equation is given by

d 1 1
1+d( ,m—)v-(—v )————— .
( “ P & ,cx'l(z)p

= — [s(2)/r)8(z — z,,r), (23)

where * denotes the convolution operator. From a numerical
point of view, the inclusion of this convolution operator
means that, in general, a single step forward in time requires
the entire time history of the field. Specifying the kernel of
the convolution, d(z,¢) is equivalent to specifying the fre-
quency dependence of the damping.

A useful simplification is obtained by assuming the ker-
nel takes the form of a delta function in time. In other words,
we write d(z,¢) = d(z) (1), obtaining

a 1 1
- Ilwf —wvp) — ——
( kd() 8t)v ( p P) pci(z) 2
= — [s()/r1d(z — z,,r), 24)

which is the Voigt model for damping. As before, we apply a
Fourier transform to obtain the FFP form:

Lp+d2)Lp, — {1/ p(2)1} b,

= —s(0)b(z ~z,), (25)
where .7 is the operator
afl1ad k?
g-=_h(___ )_.__ . 2
p== Pazﬁ - b (26)

The convected form is obtained by making the substitution
a, = ﬁe - ile:
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; k2p? 2ikV
1+ ikVd f+-_-) +(d 2 .5:’——-—) i
(1 1 +55)a+(d@r -2

—{/[p1} g, = —s(t)e~ *V8(z—z,). n
We use a simple centered-difference approximation for the
time derivative in the damping term so that the resulting
marching equation remains a three-step recursion.

Note that by factoring out a time dependence of the
form ", Eq. (23) assumes the form

[1 + iod(2)1V-[(1/p)Vp] — {0*/[ pP(2) 1} p

= [s(@)/r]6(z — z,,r). (28)
This is a (variable density ) Helmholtz equation with a com-
plex sound speed & given by

Z(z,0) = [1 + ind(2)13(2). (29)

Thus, for low frequencies, the imaginary part of the sound
speed grows linearly in frequency, and the attenuation coef-
ficient grows in proportion to the frequency squared. Experi-
mental data in the 10- to 1000-Hz region seem to suggest a
frequency dependence somewhere between linear and qua-
dratic.!!

iV. EXAMPLES
A. A pulse in free space

As a first example, we consider the propagation of a
pseudo-Gaussian pulse in free space. The particular wave-
form used is given by

0.75 — cos 2nf.t + 0.25 cos 4af.t, forO<t< /L,

B [0, else,

(30)
where f_ is a frequency that characterizes the pulse length.
We use /. = 100 Hz. (The model is of course capable of
handling an arbitrary pulse time series. A number of such
“canned” source functions given in Ref. 12 have been imple-
mented. )

As illustrated schematically in Fig. 2 we consider the
field received on an array located 100 m from the source. The
exact solution to this problem is given by

L)
}/] : /7

- 100 m
€=1500 m/s -

Vr 100 m _%? NV

N

FIG. 2. The free-space problem.

=N
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where r, = /P + 2 is the slant range to the receiver, and ¢, !
is the sound speed, which we set at 1500 m/s. Thus the time i°=15°f' m/s Joadwenn
series at each receiver is a replica of the source function, l::ut B oo 574
delayed according to the travel time to that particular receiv- i
er and scaled according to a spherical spreading law. This ; Transmitted wave
solution is plotted in Fig. 3(a).
In Fig. 3(b) we plot the results obtained using the time-
marched FFP with a grid spacing of 2 m and using the ex- |,
plicit (0,0) scheme (lumped mass/explicit time integra- N

tion). Dirichlet conditions have been applied at a sufficient
distance from the source (200 m) to aveid the pulse interact-
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z

FIG. 4. Environmental scenario for the head-wave problem.
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N-wave

1o Max =1.2982033 Freq = 100.00

Amplitude

©.000 0.005

Time (s)

0.010 0.015

FIG. 6. Plot of the derivative of the pseudo-Gaussian wave.

ing with the boundary. The time step is set at 0.95 times the
maximum stable time step, and the same step is used for each
spectral component. With this grid spacing we have a little
over seven points per wavelength at the 100-Hz characteris-
tic frequency of the pulse. The numerical results show a well-
known characteristic of such finite-element or finite-differ-
ence schemes: that of numerical dispersion. This aspect is
discussed in more detail by Belytscho and Mullen"? and by
Trefethen.'*

The dispersion characteristics are, of course, dependent
on the particular difference scheme which is used. Switching
to the implicit (1,0.25) scheme (consistent mass/trapezoi-
dal integration), we abtain the results in Fig. 3(c) where
now the ripple precedes the true solution. In both cases,
however, we can obtain a suitably accurate solution simply
by refining the mesh. In Fig. 3(d) we use the explicit scheme
with a mesh width refined to 1 m (15 points per wave-
length), which yields a solution that is difficult to distin-
guish from the exact solution.

At this time, we are open-minded about how to choose
these various parameters. The implicit schemes seem to have
won little favor for higher-dimensional problems due to the
costs of solving the linear system at each step; however, this

3 Time = 0.120 Max = 0.053
1

204

40

60

a0

100 1 e |
0.00 0.05 0.10 0.14
Range (km)

b oo ]
0.19
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Depth (m)
|
|

is not an important consideration for our problem where we
obtain tridiagonal matrices. Nevertheless, the explicit
scheme would seem to be attractive for parallel or pipeline
architectures. In terms of minimizing the dispersion charac-
teristics, one has several parameters to consider. This in-
cludes (e, ) for the basic discretization as well as the time
step, which can easily be adjusted differently for each spec-
tral component. There is also the possibility of adjusting the
finite-element grid as well as the convection velocity V. In
some problems it may be useful to adjust several of these
parameters dynamically or as a function of the spectral com-
ponent k.

B. A head-wave problem

We next modify the previous problem by introducing a
faster half-space with a velocity of 2500 m/s located 50 m
below the source as indicated in Fig. 4. The time evolution of
the field is plotted in Fig. 5 for a sequence of times from 20 to
120 ms. Note that the pressure has been normalized so that

the maximum is unity and also multiplied by a factor of /¥ to
compensate for cylindrical spreading.

In the initial frame we see a spherical wave since the
pulse has not yet contacted the interface. In Fig. 5(b) the
pulse is just beginning to interact with the lower half-space,
and by Fig. 5(c) the effects on the transmitted wave are
clearly visible. Since the sound speed is higher in the lower
half-space, the pulse is longer in the bottom than in the top.
The transmission coefficient is less than unity so that the
transmitted wave shows a decreased amplitude relative to
the direct wave.

The reflected wave shows a more complicated structure
with a region of negative pressure trailing the leading edge.
The phase of the reflection coefficient for a half-space is
neither 0° nor 180°, A 90° phase change would yield a Hilbert
transform of the pulse with the inverted trailer. However,
the half-space is even more complicated in that the phase is
angle dependent. Finally, we note that the critical angle ef-
fect shows up in the reflected wave: At steep angles there is
virtually no reflected energy.

In Fig. 5(d)-(f) we can see the wave in the lower half-

. ABOVE  0.09
007 - Q.09
5 0.0 - 0.07
. g'g:: o :'G"g FIG. 7. Field after 0.120 s using the-source
_o:o’ = CILOI wavelet of Fig. 6.
-0.03 - —-0.01
-0.05 - -0.09
~0.07 ~ ~0.06
. -0.09 - -0.07
PELOW  -0.09

1
0.24
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0.0

FIG. 8. Ray trace for the hyperbolic co~
sine profile.
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space pulling ahead of the direct wave due to the greater
wave speed in the bottom. (Note that we have changed the
color scale in order to highlight the weak head-wave arriv-
al.) The direct wave in the upper half-space carries with it a
“direct-wave root”'* which protrudes into the lower half-
space.

The wave front of the head wave is also clearly visible
forming a line segment starting from the transmitted wave in
the lower half-space touching tangentially the reflected wave
front. (This is indicated schematically in Fig. 4.) The head
wave has a well-defined leading edge behind which is a re-
gion of higher pressure with no clearly defined termination.
We remind that the time series for the head wave is roughly a
convolution of the source time series s(¢) with the Heaviside
function H(t). Thus, behind the wave front, the received
time series approaches the integral of the source function.
(We refer the reader to the text of Aki and Richards'® for a
readable mathematical analysis of the head wave.) Any
source with a component at zero frequency will leave a non-
decaying tail in its wake.

Conversely, by using a source with no DC level, we can
obtain a head wave without a tail. As an example, we consid-
er the wavelet given by
sin 2mf.t — 0.5sin 4mf.t, forO<i<1/f,

0, else,

and plotted in Fig. 6. ( This wave is proportional to the deriv-
ative of the psendo-Gaussian pulse previously considered. )
After 0.12 s we obtain the snapshot shown in Fig. 7. The
reflected and transmitted waves show the positive leader and
negative trailer of the original wavelet. The head wave is an
integrated version of the source wavelet and therefore has
roughly the form of a pseudo-Gaussian pulse. Note that the
amplitude of the head wave increases as we move away from
the interface toward the point of contact with the refiected
wave.

(1) = [ (32)

C. The hyperbolic cosine profile
As a final example, we consider a hyperbolic cosine pro-
file given by
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Range (km)

¢(z) = 1500 cosh {0.0003(z — 1500)]. (33)
This problem has been previously treated by Tolstoy et al.'?
for time-harmonic forcing. The attraction for our purposes is
that the effects of the refraction are particularly simple. The
ray trace shown in Fig. 8 illustrates that the rays refocus
perfectly at distances of about every 10 km.

The source time series is the same “pseudo-Gaussian™
used for the previous problem, but with the central frequen-
cy decreased to 5 Hz. Unlike the previous problem we allow
the pulse to reflect off the ocean surface and ocean bottom
located at z = 0 and 3000 m, respectively. These boundaries
have both been treated as pressure-release surfaces.

The sequence of snapshots in Fig. 9 shows the develop-
ment of the field over a period of about 10 s. After 3 s the
initially spherical wave has flattened out due to the refractive
effects as shown in Fig. 9(a). Behind the direct wave we see
the surface and bottom reflections coming in with an invert-
ed phase. In the next frame the curvature of the wave front
becomes inverted as the wave begins to converge toward the
focal point. In Fig. 9(c) the wave front has reached the ap-
proximate location of the focal point, and the peak ampli-
tude is consequently much higher. Finally, in Fig. 9(d), the
wave front has passed through the focal point and begins to
diverge again. The wave front has been distorted as a result
of its passage through the focus and shows an in-phase lead-
ing wave and an out-of-phase trailer. Roughly, the wave is
phase shifted by 90° every time it passes through the foci so
that after two cycles a phase-inverted version of the pulse is
recovered.

V. SUMMARY AND CONCLUSIONS

We have described a fast-field program that is marched
directly in the time domain and suitable for typical problems
in underwater acoustics. The algorithm allows for multiple
layers within which the sound speed is an arbitrary smooth
function of depth. At the interfaces between layers we allow
for possible discontinuities in material properties. Addi-
tional terms have also been included to account for attenu-
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ation and for advection which is useful for providing a coor-
dinate system which frames the pulse.

There remain a number of questions for further re-
search. First, it would be desirable to implement the more
flexible loss term with arbitrary frequency dependence. Sec-
ond, there are several possible avenues for increasing the
efficiency of the algorithm. For instance, the time step and
depth step could be varied as a function of time and spectral
component. Higher-order discretizations could be extreme-
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ly useful. Finally, it would be desirable to treat mixed acous-
tic and elastic problems.

APPENDIX A: STABILITY FOR THE EXPLICIT SCHEME
For the explicit scheme, the equation

d(l a ) [z 1=

e T I n'=0 Al
= pazﬁ pﬁ —pc,(z)p (AD)
is discretized by
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Kp/—M[(p/*'—2p/ +p/ ")/(AD?*]1 =0, (A2)

where K is a tridiagonal matrix, and M is a diagonal matrix.
The ith rows of K and M are given by

ki =V(pi_1hi_y),

2 2
k“:( 1 _khf‘,)Jr(—n_M.),
g hiy Pi—1 a:h, Pi

Kisy 1 = 1/Cpihy),

m ___i( hi_y i hi)
Y2 P.'_lf-’f—l Pfff '

where #;, ¢;, and p; denote the thickness, sound speed, and
density of the ith element, respectively. For simplicity, we
shall ignore the boundary conditions which modify the first
and last rows of these matrices.

The general solution of this recursion can be represented
as a sum of terms £ ‘p where £ and p satisfy the algebraic
eigenvalue problem:

{M£? — [2M + K(AN?)€ + M}p =0.

For stability we require that an initial disturbance should
remain unamplified, i.e., |£|<1.

Letd = i(£ + 1)/(£ — 1), whichimplies£ = (4 + i)/
(A — i). Since the bilinear transformation maps the unit cir-
cle into the lower half-plane, we will want to show that all 4
lie in the lower half plane. Substituting, we obtain

(A3)

(A4)

[4M/(A)? + Klp= — A °Kp. (AS5)

Now, this is a generalized algebraic eigenvalue problem
of the form Ax = «Bx with A symmetric and B symmetric
and positive definite. Thus all the eigenvalues are real. In
addition, by the inertia theorem the eigenvalues of this gen-
eralized problem have the same signs as the eigenvalues of A
itself. So it will be sufficient to establish a condition which
ensures that all eigenvalues of A are positive. By Gerschgor-
in’s theorem, the eigenvalues lie within the union of discs:

[4m 7CAO? + Ky — A2 <kis ) + Ry (A6)
Thus we require that all discs lie to the right of the origin:

am,; /(A + Kii— (ki +kipy 1 )>0. <(AT)

Solving for Ar, we obtain the stability condition
4m,
Af)? <min Z A8

( 7T oGP o P | S
or
(A1)* <min [(——2"“‘ S )/

£ i clz— 1 Prc?

k2h;_ k2h,
( I )].(Am
Pi_rhi_y Pi— pihy Pi

If the mesh is equispaced, and the density and sound-
speed constant, this reduces to

2 o 1 ﬁ)
(A0 <1/c(h2+ =)

Note that for k =0 we recover the usual Courant-Frie-
drichs-Lewy condition for a vibrating string.

(A10)
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APPENDIX B: STABILITY FOR THE IMPLICIT SCHEME
For the implicit scheme, the equation

i(iia)_k_’(l_l’_’)u_ﬁk’“
\pat) T p 1P T

1
— P, =0 B1
pc’(z) B (BD)
is discretized using
j+1 4 =1 J+l_ a1
K2 +2: e +:2kVM°—-T"—
t
f+1__ j j—=1
—mY '+p'” (B2)

(AN?

For an isovelocity, isodensity problem with an equispaced
grid, the matrices K and M have elements

1 a\ k(1 — VciHh
k!.:'—lz'_"_(_)_"'_'_'_'_'_""n
ph 6 p
ko= —2__(6—20.-)!:2(1—?’2/02)}:
nr Ph 6 p r
] =L_(i)k2(l—1/”/c2)h
ni+ 1 ph 6 P ]

my,_, =(a/6)[h/( PC2)],

mg; = [(6_2(1)/6][&/(["72)]-

my; = (a/6)[h /( pc))]. (B3)

In the following proof we shall require only that — K
and M are symmetric and positive definite. This poses the
restriction that the convection velocity ¥ should be less than
the slowest element sound speed, but allows for depth-de-
pendent material properties and meshes.

The corresponding eigenvalue problem is
[K(& + 1)2/4 + ikVM(E? — 1)/At

—M(&— 1)’/(A’lp=0. (B4)
Asbefore, we make the bilinear substitution 4 = i[ (€ + 1)/
(£ — 1)] to obtain,

[ —KA?— (4kVM/ADA — 4M/(A1Y’1p=0. (BS)

Introducing the vector, q = W'p, where W is defined by
— K = WW/, this can be rewritten as

[12— (4kV'B/ANA —4B/(A1)]q=0, (B6)

where B = W™ 'MW ~'is a symmetric positive definite ma-
trix. (This follows since M is symmetric positive definite and
B is related to M by a congruence transformation. ) We de-
note the eigenvalues and eigenvectors of B by 3; and q;, re-
spectively. Evidently, g; is also an eigenvector of Eq. (6)
with the corresponding eigenvalues satisfying

A% — (4KkVB//ANDA —483,/(AD*=0. (B7)
The discriminant of this equation is positive and so all 4, are

real. Thus the difference equations are unconditionally sta-
ble.
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