A numerical method for bottom interacting ocean acoustic
normal modes

Michael B. Porter® and Edward L. Reiss
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston,
Hlinois 60201

(Received 9 July 1984; accepted for publication 8 November 1984)

In this paper we present a finite difference method to numerically determine the normal modes
for the sound propagation in a stratified ocean resting on a stratified elastic bottom. The
compound matrix method is used for computing an impedance condition at the ocean—elastic
bottom interface. The impedance condition is then incorporated as a boundary condition into the
finite difference equations in the ocean, yielding an algebraic eigenvalue problem. For each fixed
mesh size this eigenvalue problem is solved by a combination of efficient numerical methods. The
Richardson mesh extrapolation procedure is then used to substantially increase the accuracy of
the computation. Two applications are given to demonstrate the speed, accuracy, and efficiency of

the method.

PACS numbers: 43.30.Bp, 43.20.Bi, 92.10.Vz, 43.30.Es

INTRODUCTION

The amount of energy from a time periodic sound
source that reaches the ocean’s bottom depends on several
parameters such as, the ocean’s depth, and the source’s fre-
quency and location. Furthermore, the sound velocity pro-
file in the ocean, which forms acoustic ducts, may trap much
of the source’s energy. If the interaction of the sound waves
with the bottom is relatively unimportant the bottom is
usually modeled as an acoustically rigid surface. However,
for low-frequency sources and/or shallow oceans and/or
weak acoustic ducts, the bottom interaction of the sound
waves becomes a significant feature of the sound propaga-
tion. Then it is necessary to more carefully model the bottom
material.

The material properties of the bottom may differ sub-
stantially depending on the geographical location. “Soft”
bottoms have been modeled as fluid half-spaces neglecting
~ the effect of shear waves,' or as fluid layers overlying uni-
form elastic half-spaces.* In other studies, the bottom is
modeled by a sequence of uniform elastic layers with con-
stant Pand S wave velocities in each layer. The uniform layer
models, which have been employed extensively in seismolo-
gical studies, are known as the Thomson—Haskell, or propa-
gator matrix method.”'? In this paper, we model the bottom
as a continuously stratified elastic layer of finite thickness
that is resting on a rigid half-space. This half-space corre-
sponds to relatively rigid basement rocks.

The method of normal modes is a standard procedure
that is used to solve sound propagation problems in stratified
oceans. The resulting horizontal propagation numbers k and
the normal modes are the eigenvalues and eigenfunctions,
respectively, of a boundary value problem for an ordinary
differential equation whose coefficients vary with the depth
coordinate z, only. It is necessary to accurately determine
these eigenvalues because errors in their values occur as

* Present address: Code 541, Naval Ocean Systems Center, San Diego, CA
92152.
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phase shifts in the range dependence of the acoustic field.
These errors can then rapidly degrade the accuracy of the
normal mode representations as the distance from the source
increases. . .

In Ref. 13 we have presented a finite difference method
for numerically solving the eigenvalue problem for an acous-
tically rigid bottom. In this method standard and modified
Richardson mesh extrapolation procedures are employed
yielding a method which is extremely efficient over a wide
range of accuracy requirements. In addition, a variety of
well-known numerical procedures, such as Sturm sequences,
the bisection method, and Newton’s and Brent’s methods,
are employed to solve the resulting algebraic eigenvalue
problems corresponding to each mesh width. In this paper,
we present the necessary modifications in the numerical pro-
cedures so that it can be applied efficiently to solve the cou-
pled problem of propagation in the ocean and in the elastic
bottom. We employ the standard but not the modified Ri-
chardson extrapolation procedure of Ref. 13 in this paper,
although it could be used to obtain increased accuracy. Oth-
er numerical procedures can be employed to solve the eigen--
value problem such as, shooting methods'* and finite ele-
ment methods using cubic splines.!®

The formulation of the problem and the numerical pro-
cedures are described in Sec. 1. The method is applied in Sec.
IT to two problems to demonstrate its accuracy and effi-
ciency. The first problem corresponds to a shallow ocean
with a relatively soft elastic bottom. In the second problem
we consider a deep ocean where the Munk profile'® is em-
ployed to model the sound speed stratification in the ocean.
The P and S wave velocities in the bottom are assumed to be
linear functions of the depth. The significance of the elastic
bottom is demonstrated by a comparison in Sec. II with the
results corresponding to a rigid ocean bottom.

Material absorption has not been included in our mod-
els of the ocean or the elastic bottom. The models can be
modified to include this effect by introducing small imagi-
nary components in the ocean and elastic wave speeds. Then
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the resulting problem could be solved numerically‘ using
methods similar to the present method.

I. FORMULATION

The differential equation for the acoustic normal pres-
sure modes in a stratified ocean is given in

P" + [@/c*2) —k?] p=0. (1)
Primes denote differentiation with respect to the depth vari-
able z, which is positively directed in the downward direc-
tion so that z=0, z=D,, and z= D, correspond to the
ocean surface, the ocean bottom, and the elastic layer bot-
tom, respectively. Thus, z = D, is a fluid—elastic interface. In
addition,  is the circular frequency of the source, ¢(z) is the
sound speed, and & is the horizontal (range) wavenumber.

In the elastic bottom the corresponding elastic normal
mode equations can be expressed as the following system of
four first-order, ordinary differential equations'”:

r' = Er. (2)
Here r is the vector with components 7,, 7,, 73, and r,, which
are defined by

ikr, =u, (3a)
where, the quantities u(z), w(2), 7,,(2), and 7,,(z) are, with the
factors e®* ~“*) removed, the x displacement, the z displace-
ment, the shear stress, and the normal stress, respectively. In
addition, E is the 4 X 4 matrix defined by

r=w, ikr,=r,, r=r,,

E(z,k)
0 —1  1/pcd) 0
_ k(z) 0 0 1/( pei)
k3¢ (z) — pw? 0 0 —7(2)
0 —o’p 0 0
(3b)
where the quantities 7(z) and & (z) in (3b) are defined by
2 _ 5.2 4 _ _ 22
mz)ECL_Z_Ci ¢ (z):P[Cp (€ —2ar] (3¢)

2 c
P P
Here, ¢, (2) and ¢,(z) are the Pand S wave speeds in the elastic

bottom and p is its density.
—J

Ca, — hk? 1
1 a,—h%k? 1

1 ay _, —h%k?

2(k?)

where the coefficients a; are defined by
a,=—-2+h’w/3z), i=12,.,N,

To complete the formulation of the eigenvalue problem
we specify the following boundary and interfacial condi-
tions:

pl0)=0; (4a)
o’ry(Dy) =p'(D,), r(D,)=0, rdD,)= —pDy); {4b)
7{Dy) = r(Dy) = 0. (4¢)

The condition (4a) implies that the ocean surface is free (pres-
sure release); the conditions (4b) imply the continuity of the
normal displacement and the two stresses at the interface
z = D; finally, the conditions (4c) imply that the elastic lay-
er, which is of thickness D, — D, is resting on a rigid base-
ment at z = D,. The eigenvalue problem is: for specified @, p,
c(z), ¢,(2), and ¢, (z) determine the values of k for which (1)-4)
have nontrivial solutions.

To solve this problem numerically, we temporarily re-
place the elastic layer by the impedance condition atz = D,

glk?)p'(Dy) +f (k) plD)) =0, (5)

where the functions fand g are to be determined by the prop-
agation in the bottom. The idea of using an impedance condi-
tion at the fluid—elastic interface has been previously em-
ployed in ocean acoustic studies (see e.g., Ref. 18 and
references given therein). Then the bottom is usually mo-
deled by uniform layers, thus permitting explicit representa-
tion of the waves in the bottom, resulting in simplifications
in the analysis.

We first consider the ocean acoustic eigenvalue prob-
lem consisting of (1), (4a), and (5). We divide the interval
[0,D,] into N, equals subintervals by the points z; = ik,
i=0,1,...,N, where the mesh width # = D,/N,. Then using
the standard three-point difference approximation to the
second derivative in (1) and the centered difference approxi-
mation to the first derivative in the impedance condition (5)
we obtain the algebraic eigenvalue problem

Ak})p=0 (6)

as an approximation to the ocean acoustic eigenvalue prob-
lem. Here p is the ¥,-dimensional vector with components
P Pos-Py,- The Ny XN, tridiagonal matrix A4 is defined by

, : (7

1
—h?k?) —2hf (k?)

gk *)ay,

(8)

To determine the coefficients f'and g in (5) we first obtain two linearly independent solutions r and s by integrating the
modal equations (2) in the elastic layer from the rigid basement up to the interface with initial conditions given by

rD,) =(0,0,1,0), s(D,)=(0,0,0,1).

(9)

If k2 is an eigenvalue then it is possible to form a linear combination, Cr + C.s, that satisfies the interface conditions at
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ry 55 p'/ mz
C, )
!“3 33 Cz e 0 . F (10}
ry s —
These are three linear algebraic equations for the three unknowns C,, C,, and k. The quantities r; and 5;, j = 2,3,4, in (10) are
components of r and s. By eliminating C, and C, from (10), we find that in order for the system to be solvable k must satisfy (5),

where

f=ars, —rs), g=rys,—rss. (1)
Thus, the functions fand g can be computed by integrating (2) twice from the rigid bottom up to the interface with different ini-
tial conditions. However, because of exponential behavior in r and s as z—D,, these vectors are nearly linearly dependent

(numerically) for z near D,. This difficulty is resolved by using the compound matrix method.'*!%2°

We define the variables Y,(z),..., Y,(z) by

Yi=rs;—rs, Ya=rs,—rs,

Yi= —(rs; — %),
Ys= —(rss—rest), Ys= —(rs,—res,)

Thus, it follows from (11) and (12) that -
f=o"Y, g=Y, forz=D,

Ys=rs;—rys,

(12)

(13)

By differentiating {12) and using (2) to eliminate the derivatives of r and s we obtain the followmg differential equation for the

five-dimensional vector Y:
VAT 0 0 0 1/(pc?) — 1/ pcl) Y,
Y, 0 0 0 —o’p — k%) -l ||y,
vr|=| o o 0 e A | B2 (148)
¥ ktg)—o’  WUp) —k*c: -2/ 0 (1] Y,
Y, o’p — 1/(pc}) —2k? 0 0 Y,
1
Since the differential equation for ¥, reduces to  thismethod because it is explicit, it has second-order accura-

Y5 = — kY, it has been eliminated from this system. The
initial conditions at z = D, for Y are obtained by substituting
(9) into (12) to give

(14b)

The initial value problem (14) is then integrated backwards

in z using the modified midpoint method.?'** It is an explicit

second-order integrator for first-order systems of the form
= f{2,Y) and is givén by

Yo=YZ) ¥1=VYo+ Auflzp ¥oh

Yier =V¥io1 + 2,00z, y,), i=12,. N,

(15)

where £, is the mesh width for the bottom, and Y, is ob-

tained from

Yy, =(¥nm—1 + 2, +¥n, 4.1 V4 (16)
The final step (16} is a filter to remove the relatively weak
instabilify in the integration. We employ the one-point filter
(16) because we use only the values of the functions at this
terminal point (z, = D,) to solve the eigenvalue. The number
of subintervals in the bottom N, must be even. We employ
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cy, and finally because of its speed.

To solve the eigenvalue problem (1}{4) for fixed mesh
widths /4 and h,,, we first solve (14) for a given & 2 and then use
(13) to obtain fand g. Then we obtain the determinant of (7)
by the following recursion

Po=0, p =1, 5
=la,—h*k%p,_y —pi_2 i=2,..N,—1, (17)
d(k?) = [ glkay, —h %) + 2hf (k)] Py, _,
-Qg(ksz;,l_!.

This is equivalent to shooting down from the ocean surface
to the interface and computing f(k 2) p(D,) + glk 2)p’(D,).
Subsequently & 2is adjusted such thatd (k ?) vanishes by using
the secant method, as we now describe.

In Ref. 13, where the boundary condition at z= D, is
p'(Dy) =0, it was possible to employ the Sturm sequence
method toobtain isolating intervals for the positive eigenval-
ues of the resulting algebraic system, thus generating an ini-
tial guess for the coarsest mesh. However, to the authors’

- knowledge, the Sturm sequence procedure has not been ex-

tended to the present algebraic eigenvalue problem (6). Thus,
we have employed the following method to obtain the alge-
braic eigenvalues for the coarsest mesh.

We apply the secant method beginning ata k =k,
equal to the upper bound on the eigenvalues. A good esti-
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TABLE . (a) Numerical eigenvalues for the shallow water problem. (b) Errors.

(a) K2(p)=100xk2(p) (®) e(p)=k?-k%(p)

N1/N2 100/300 150/450 200/600 300,900 N1/N2 100/300  150/450  200/600  300/900
ET= 7.9870 . 57940 4.7920 6.9560 ET=  7.9870 5.7940 4.7920 6.5560
j K(1) K°(2) K°(3) K°(4) Exact J e(1) e(2) e(3) e(4)
'%'-777553773443"717533674179 T.7807197667 1.7807571989 1.7801811324 1 2.7E-06 1.2E-06 6.7E-07 3.0E-07
2 1.6848824426 1.6854136651 1.6855997232 1.6857326642 1.6858390427 2 9.6E-06  4.3E-06 2.4E-06 1.1E-06
3 1.528783283%2 1.5297586069 1.5301003437 1.5303445619 1.5305400092 3 1.8E-05  7.8E-06  4.4E-06  2.0E-06
4 1.3164975109 1.3177504076 1.3181895437 1.3185034122 1.3187546275 4 2.3E-05 1.0E-05  5.7E-06  2.5E-06
S 1.0562214624 1.0573243701 1.0577109025 1.0579871623 1.0582082698 5 2.0E-05  8.8E-06 5.0E-06  2.2E-06
6 0.7688670707 0.7692402970 0.7693704899 0.7694633464 0.7695375485 6 6.7E-06 3.0E-06 1.7B-06  7.4E-Q7
7 0.4831481449 0.4824747429 0.4822376204 0.4820677931 0.4819316589 7 -1.2E-05 -5.4E-06 -3.1E-06 -1.4E-06
8 0.3851153068 0.3851065403 0.3851034540 0.3851012435 0.3850994716 8 -1.6E-07 -7.1E-08 -4.0E-08 -1.8E-08
9 0.3582958781 0.3582725441 0.3582643672 0.3582585232 0.3582538459 9  -4.2E-07 -1.9E-07 -1.1E-07 -4.7E-08
10 0.3193730866 0.3193449%29 0.3193351361 0.3193281560 0.3193225825 10 -5.1E-07 -2.2E-07 -1.3E-07 -5.6E-08
11 0.2884255951 0.2882465840 0.2881841900 0.2881397014 0.2881041566 11 -3.2E-06 ~1.4E-06 -8.0E-07 -3.6E-07
12 0.2724371949 0.2721226385 0.2720129433 0.2719347156 0.2718722087 12 -5.6E-06 —2.5E-06 -1.4E-06 -6.3E-07
13 0.2465595600 0.2462779763 0.2461792850 0.2461087480 0.2460522925 13 -5.1E-06 -2.%E-06 -1.3E-06 -5.6E-07
14 0.1851786040 0.1847981253 0.1846653715 0.1845706765 0.1844949975 14 -6.8E-06 -3.0E-06 ~1.7E-06 -7.6E-07
15 0.1381986509 0.1375707205 0.1373512051 0.1371944841 0.1370691507 15 -1,1E-05 -5.0E-06 ~2.8E-06 -1.3E-06
16 0.0836556721 0.0819155609 0.0813270671 0.0809132325 0.0805860636 16 -3.1E-05 =1.3E-05 -7.4E-06 -3.3E-06
17  0.0486839034 0.0462087151 0.0453006868 0.0446384773 0.0441004226 17  -4.6E-05 -2.1E-05 -1.2E-05 -5.4E-06
18 0.0032876241 0.0024746046 0.0022004628 0.0020083102 0.0018569072 18 -1.4E-05 -6.2E-06 -3.4E-06 -1.5E-06

mate for k,,, is given by @/min (¢, c,,c,). It can be shown
that when the roots are real the secant method converges to
the largest root. In addition, if the “shift” suggested by the
secant method at each step is doubled then the secant meth-
od can at most cross over one root. Thus when the sign
changes one can switch back to the standard secant method
and still be assured of convergence to the desired root.?* The
next largest root is found by deflating all previous known
roots. The defiation is accomplished by expressing the deter-
minant with known roots divided out as follows:

k 2
dk?)=dk? ( —)
=it 47—z
Asin Ref. 13, we apply the Richardson mesh extrapola-
tion method to obtain improved estimates of the eigenvalues

(18)

of the continuous problem from the approximations of the
eigenvalues of the algebraic problem. Thus, if the converged
numerical value of the jth eigenvalue of the algebraic prob-
lem with mesh width 4 is denoted k }( ), then we have™*

K2h) = (kO + bh® + byh* + . (19)

Here, (k {)* is the Richardson approximation to the jth eigen-
value of the continuous problem. It is then determined from
the algebraic system that results from applying (19) to a se-
quence of successively finer meshes {A;} = h,h,,....h,,.
Since this approximation depends on the sequence of the
mesh widths that is employed we denote the Richardson
approximation  corresponding to  the  meshes
bphy 1ty o BY (KJP (Dyenng).

We wish to emphasize that the deflation procedure is

TABLE II. (a) Richardson extrapolations for the shallow water problem. (b) Errors.

2 2
(a) K2(p,....q)=100xk°(p, . ..,q) (b) e(p) = K2-2(p, ... .q)
N1/N2 100/300 150/450 200/600 300/900 N1/N2  100/300 150/450 200/600 300/900
ET= 7.9870 3;7940 ,4:7920 5 6.5560 ET= 7.9870 5.7940 4.7920 6.5560
i K=(1) K<(1,2) K<(1,2,3) K(1,2,3,4) Exact i e(1) e(1,2) e(1,2,3) e(1,2,3,4)
1.780517844 1.78078707 1 1 4 1.7807871324 1 2.TE-O . . B

2 1.6848824426 1.6858386431 1.6858390400 1.6858390427 1.6858390427 2 9.6E-06 4.0E-09 2.7B-11 7.0E-14
3 1.5287832832 1.5305388658 1.5305400043 1.5305400092 1.5305400092 3 1.8E-05 1.1E-08 4.9E-11 1.2E-13
4 1.3164975109 1.3187527249 1.3187546214 1.3187546275 1.3187546275 4 2.3E-05 1.9E-08 6.1E-11 1.2E-13
5 1.0562214624 1.0582066962 1.0582082648 1.0582082698 1.0582082698 5 2.0B-05 1.6E-08 4.9E-11 8.1E-14
6 0.7688670707 0.7695388780 0.7695375483 0.7695375485 0.7695375485 6 6.7E-06 -1.3E-08 2.5E-12 1.2E~-14
7 0.4831481449 0.4819360213 0.4819316578 0.4819316589 0.4819316589 7 -1.2E-05 -4 .4E-08 1.2E-11 4.8E-14
8 0.3851153068 0.3850995272 0.3850994719 0.3850994716 0.3850994716 8 -1.6E-07 -5.6BE-10 -3.4E-12 -2.5E-16
9 0.3582958781 0.3582538770 0.3582538465 0.3582538459 0.3582538459 9 -4.2E-07 -3.1E-10 -5.9B-12 -5.7E-15
10 0.3193730866 0.3193224099 0.3193225836 0.3193225825 0.3193225825 10 -5.1E-07 1.7E-09  -1.1E-11 3.2E-14
11 0.2884255951 0.2881033751 0.2881041670 0.2881041566 0.2881041566. 11  -3.2E-06 7.8E-09 -1.0E-10 3.0E-13
12 0.2724371949 0.2718709934 0.2718722109 0.2718722088 0.2718722087 12 -5.6E-06 1.2E-08 -2.2E-11 -2.6E-13
13 0.2465595600 0.2460527093 0.2460522917 0.2460522925 0.2460522925 13 -5,1E-06 -4.2E-09 8.1E-12  -1.3E-14
14 0.1851786040 0.1844337424 0.1844950031 0.1844949974 0.1844949975 14 -6.8E-06 1.3E-08 -5.7E-11 9.2E-14
15 0.1381986509 0.1370683762 0.1370691693  0.1370691506 0.1370691507 15 -1.1E-05 7.78-09  -1.9E-10 1.0E-12
16 0.0836556721 0.0805234721 0.0805860855 (.0805860745 0.08058606%6 16 -3.1E-05 6.3B-07 -2.2B-10 -1.1E-10
17 0.0486839034 0.0442285645 0.0441014410 0.0441004263 0.0441004226 17 -4.6E-05 -1.3E-06 -1.0E-08 -3.7E-11
18 0.0032876241 0.0018241889 0.0018559300 0.0018568930 0.0018569072 18 -1.4E-05 3.3E-07 9.8E-09 1.4E-10
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used to obtain approximations for the algebraic eigenvalues
only for the coarsest mesh. Initial guesses for the eigenvalues
for the second and subsequent meshes are obtained by using
the Richardson extrapolation procedure, but extrapolating
to the desired mesh size, as we did in Ref. 13.

Once the eigenvalues have been computed to the de-
sired accuracy, the ocean eigenfunctions are found by in-
verse iteration.?® In some applications it is desirable to ob-
tain eigenfunctions r(z) within the elastic layer. These elastic
eigenfunctions may then be obtained by incorporating differ-
ence equations for the elastic layer into the matrix and then
applying inverse iteration to the entire matrix. For our com-
putations of the elastic eigenfunctions we have employed the
trapezoidal method to obtain these difference equations in
the bottom. The computation of the elastic eigenfunctions
using the compound matrix method presents certain diffi-
culties that we wished to avoid.

il. APPLICATIONS OF THE METHOD

Two applications of our method are now presented to
demonstrate its accuracy, speed, and versatility. In the first
problem we consider a shallow ocean, with a constant sound
speed of 1500 m/s, and constant S- and P-wave speeds of 700
m/s, and 1700 m/s, respectively, in the bottom, i.e., we con-
sider an isovelocity ocean and bottom. The ocean depth is
300 m and has a density of 1 g/cm? while the bottom layer
has a thickness of 200 m and a density of 2 g/cm>. The circu-

-lar frequency is @ = 30 #/s.
~ The numerically determined eigenvalues and corre-
sponding errors are presented in Table I. The exact eigenval-
ues for this problem were determined by a compound matrix

P

o -

[=] 4] (=]
1

3

olo 500  100.0  150.0  200.0 250.0  300.0

sl Z
_1.0J.

. FIG. 1. Mode 3 for the shallow water problem. R, = — 1.O4E + 4 r,( +),
Ry= —3.60E+4ry X), Ry= —446E—2 r(+), R,= —347E — 1
rX). . i

1764 J. Acoust. Soc. Am., Vol. 77, No. 5, May 1985

500 1000 15 2000 2500 3000

FIG. 2. Mode 9 for the shallow water problem. R, = 1.57TE + 4 r(+),
Ry= —544E+5r(X), Ry= —292E—1ry(+), Ry= —193E — 4
ryX).

formulation of the Thomson—Haskell method. The error ta-
ble reflects the second-order convergence in that doubling
the number of mesh points reduces the error by a factor of
about 4. The extrapolations and their errors are presented in
Table II. In contrast to the unextrapolated eigenvalues, the

FIG. 3. Mode 15 for the shallow water problem. R, =4.97E + 3 r,( + ),
Ry=196E+5r(X),R; =443E—2r(+),R,= —493E — 1 r(X).
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TABLE IIL (a) Numerical eigenvalues for the Munk profile with an elastic bottom. (b) Errors.

(a) K3(p)=10%xk?(p) (b) e(p)=k-k?(p)

N1/N2  200/200 300/300 400/400 600/600 N1/N2  200/200 300/300 400/400 600/600
ET= 8.9040 7.3140 6.0490 8.3590 ET= 8.9040 7.7140 6.6490 8.3590
J K(1) K(2) K°(3) K°(4 Exact 3 e(3) e(4)

.9038346179 2.9043777763 2.9045717303 2.9047115148 2.9048240975 1 9.9E-08 4.5E-08 2.5E-08 1.1E-08
2 2.7853806272 2.7853796965 2.7853793709 2.7853791383 2.7853789522 2  -1.7E-10 -7.4B-11 -4.2B-11  -1.9E-11
3 2.7442802497 2.7442758B05 2.7442743516 2.7442732597 2.7442723862 35  -7.9E-10 -3.5E-10 -2.0E-10  -8.7E-11
4 2.7058505588 2.7058401277 2.7058364780 2.7058338716 2.7058317867 4 -1.9E-09 -8.3E-10 ~4.7E-10 -2.1E-10
5 2.6688852743 2.6688658371 2.6688590395 2.6688541857 2.6688503038 5  -3.5EB-09 -1.6E-09 -8.7E-10 -3.9E-10
6 2.6298754553 2.6298386927 2.6298258400 2.6298166640 2.629809%260 6 -6.6E-09 -2.9E-09 -1.7E-09 -7.3E-10
7 2.5846045345 2.5845339025 2.5845092028 2.5844915671 2.5844774627 7 -1.3E-08 -5.6E-09 -3.2E-09 -1.4E-09
8 2.5314592539 2.5313318617 2.5312872953 2.5312554689 2.5312300119 8 -2.3E-08 -1.0E-08 -5.7B-09 -2.5E-09
9 2.4703%3582714 2.4701445959 2.4700698176 2.4700164073 2.4699736807 9 -3.8E-08 -1.7E-08 -9.6E-09 -4.3E-09
10 2.4014708645 2.4011337395 2.4010157242 2.4009314209 2.4008639743 10 -6.1E-08 -2.7E-08 -1.5E-08 -6.7E-09
11 2.32498149%4 = 2.3244755495 2.3242983946 2.3241718322 2.3240705683 11 -9.1E-08 -4 .0E-08 -2.3E-08 -1.0E-08
12 2.2411039069 2.2403756422 2.2401205957 2.2399383710 2.2397925621 12 -1.3E-07 -5.8E-08 -3.3E-08 -1.5E-08
13 2.1501327390 2.1491218654 2.1487677992 .2.1485148121 2.1483123730 13 -1.8E-07 -8.1E-08 -4 ,6E-08 -2.0E-08
14 2.0525319298 2.0511755436 2.0507004388 2.0503609612 2.0500893090 14 -2,4E-07 -1.1E-07 -6.1E-08 -2.7E-08
15 1.9491021271 1.9473453911 1.9467301469 1.9462905650 1.9459388267 15 -3.2E-07 -1.4E-07 -7.9E-08 -3.5E-08
16 1.8412749628 1.8%90939512 1.8383305329 1.83%77852169 1.8373489546 16 -3.9E-07 -1.78-07 -9.8E-08 -4 .4E-08
17 1.7313287095 1.7287528296 1.7278520436 1.7272088742 1.7266944894 17 -4.6B-07 -2.1E-07 -1.2E-07 -5.1E-08
18 1.6211197497 1.6181491397 1.6171101886 1.6163683147 1.6157749535 18 -5.3E-07 -2.4E-07 -1.3E-07 -5.9E-08
19 1.5087252241 1.5051613795 1.5039130969 1.5030211632 1.5023074328 19 -6.4E-07 -2.9E-07 -1.6E-07 -7.1E-08
20 1.3932928320 1.3892535163 1.3878473579 1.3868455487 1.3860457098 20 -7.2E-07 -3.2E-07 -1.8E-07 -8.0E-08
21 1.3017067689 1.2990759483 1.2981689802 1.2975250575 1.2970121212 21 -4 .TE-07 -2.1E-07 -1.2E-07 -5.1E-08
22 1.2168448262 1.2119789043 1.2102506705 1.2090084277 1.2080100205 22 -8.8E-07 -4.0E-07 -2.2E-07 -1.0E-07
23 1.0851477799 1.0780936974 1.0756160472 1.0738436305 1.0724241279 23 -1.3E-06 -5.7E-07 -3.2E-07 -1.4E-07
24 0.9405899007 0.9324803764 0.9296546344 0.9276407351 0.9260324630 24 -1.5E-06 -6.4E-07 -3.6E-07 -1.6E-07
25 0.8153%073642 0.8091597645 0.8070654825 0.8055866576 0.8044134784 25 -1.1E-06 -4.7BE-07 -2.7E-07 -1.2E-07
26 0.7155495554 0.7073568710 0.7044198556 0.7023000120 0.7005910223 26 -1.5E-06 -6.8E-07 -3.8E-07 -1.7E-07
27 0.56845688%6 0.5561249358 0.5517835511 0.5486751696 0.5461842154 27 -2.2E-06 -9.9E-07 -5.6E-07 -2.5B-07
28 0.4088321911 0.3990141967 0.3960291926 0.3940483025 0.3925541393 28 ~1 .6E-06 -6.5E-07 -3.5E-07 -1.5E-07
29 0.3557864408 0.3491632463 0.3463888083 0.3442535040 0.3424531437 29 -1.3E-06 -6.7E-07 -3.9E-07 -1.8E-07
30 0.2113010907 0.1980011300 0.1940565838 0.1915338313 0.1897055209 30 -2.2E-06 -8.3E-07 -4 .4E-07 -1.8E-07
31 0.1694486681 0.1650858647 0.1628889835 0.1610428359 0.1593885055 31 -1 .0E-06 -5.7E-07 -3.5E-07 -1.7E-07
32 0.0760223149 0.0707665231 0.0690316941 0.0678093572 0.0668369969 32 -9.2E-07 -3.9E-07 -2.2E-Q7 -9.7E-08
TABLE 1V. (a) Richardson extrapolations for the Munk profile with an elastic bottom. (b) Errors.
@ K2(p.....a)=10"xk%(p.....q) ®  elp,....a)=k2-k2(p.....q)
ET= 8.9040 L7140 6.6490 8.3590 ET= 8.9040 7.7140 6.6490 8.3590
i k(1) k4(1,2) K*(1,2,3)  k%(1,2,3,4) Exact j e(1) e(1,2) e(1,2,3) e(1,2,3,4)
1 38546179 2.9048123031 2.9048240319 2.9048240971 2.9048240975 1 9.9E-08 1.2E-09 6.5E-12 1.5E-14
2 2.7853806272 2.7853789520 2.7853789522 2.7853789522 2.7853789522 2 -1.7E-10 2.0E-14 -6.4E-16 -7.3E-16
3 2.7442802497 2.744272385| 2.7442723862 2.7442723862 2.7442723862 3 '-7.9E-10 1.0E-13 2.8E-16 2.9E-16
4 2.7058505588 2.7058317827 2.7058317867 2.7058317867 2.7058317867‘ 4 -1.9E-09 3.9E-13 2.1E-16 -2.7E-16
5 2.6688852743 2.6688502873 2.6688503038 2.6688503038 2.6688503038 5 -3.5E-09 1.6E-12 4.8E-15 -1.8E-16
6 2.6298754553 2.6298092827 2.6298093259 2.6298093260 2.6298093260 6  -6.6E-09 4.3E-12 1.7E-14  -6.4E-16
7 2.5846045345 2.5844773969 2.5844774624 2.5844774627 2.5844774627 7  -1.3E-08 6.6E-12 3.2B-14  -3.4E-16
8 2.5314592539 2.5312299479 2.5312300115 2.5312300119 2.5312300119 8 -2.3E-08 6.4E-12 4.2E-14  -B.BE-16
9 2.4703582714 2.4699736555 2.4699736802 2.4699736807 2.4699736807 9 -3.8E-08 2.5E-12 4.9B-14 T.4E-16
10 2.4014708645 2.4008640395 2.4008639738 2.4008639743 2.4008639743 10 -6.1E-08 -6.5E-12 4.9E-14 4.2E-16
11 2.3249814954 2.3240707928 2.3%240705678 2.3240705683 2.3240705683 11 -9.1E-08 -2.2E-11 4.5E-14 8.0E-17
12 2.2411039069 2.2397930304 2.2397925617 2.2397925621 2.2397925621 12  -1.3E-07 -4.7E-11 3.9E-14 4.5E-16
13 2.1501327390 2.1483131665 2.1483123727 2.1483123730 2.1483123730 13  -1.8E-07 -7.9E-11 3.8B-14 6.8E-16
14 2.05253%19298 2.0500904346 2.0500893082 2.0500893090 2.0500893090 14 -2.4E-07 -1.1E-10 7.5E-14 3.2E-16
15 1.9491021271 1.9459400023 1.9459388241 1.9459388267 1.9459388267 15 -3.2E-07 -1.2E-10 2.6E-13 1.8E-16
16 1.8412749628 1.8373491419 1.8373489463 1.8373489545 1.8373489546 16 -3.9E~07 -1.9E-11 8.2E-13 4.4BE-16
17 1.7313287095 1.7266921256 1.7266944784 1.7266944895 1.7266944894 17 -4,6E-07 2.4E-10 1.1E-12 -4.7E-15
18 1.6211197497 1.6157726518 1.6157749752 1.6157749536 1.6157749535 18 -5.3E-07 2.3E-10 -2.2E-12 -1.3E-14
19 1.5087252241 1.5023103038 1.5023074482 1.5023074327 1.5023074328 19 ~-6.4E-07 -2.9E-10 -1.5B-12 1.9E-14
20 1.3932928320 1.3860220637 1.3860452322 1.3860457078 1.3860457098 20  -7.2E-07 2.4E-09 4.8E-11 2.0E~-13
21 1.3017067689 1.2969712918 1.2970134074 1.2970121237 1.2970121212 21 -4.7E-07 4.1E-09 -1.3E-10 -2.5E-13
22 1.2168448262 1.2080861668 1.2080094850 1.2080100189 1.2080100205 22 -8.8E-07 -7.6E-09 5.4E-11 1.6E-13
23 1.0851477799 1.0724504314 1.0724238520 1.0724241280 1.0724241279 23 -1.3E-06 -2.6E-09 2.8E-11 -1.1E-14
24 0.9405899007 0.9259927570 0.9260311309 0.9260324557 0.9260324630 24  -1.5E-06 4.0E-09 1.3E-10 7.3E-13
25 0.8153073642 0.8042416848 0.8044165506 0.8044135149 0.8044134784 25 -1.1E-06 1.7E-08 -3.1E-10 -3.7E-12
26 0.7155495554 0.7008027234 0.7005906830 0.7005909854. 0.7005910223 26 -1.5E-06 -2.1E-08 3.4E-11 3.7E-12
27 0.568456883%6 0.5462593775 0.5461825685 0.5461842115 0.5461842154 27 -2.2E-06 -7.5E-09 1.6E-10 3.9E-13
28 0.4088321911 0.3911598012 0.3925351732 0.3925567401 0.3925541393 28 -1.6E-06 1.4E-07 1.9E-09 -2.6E-10
29 0.3557864408 0.3438646907 0.3424740012 0.3424505132 0.3424531437 29 -1.3E-06 -1.4E-07 -2.1E=09 2.6E-10
30 0.2113010907 0.1873611615 0.1895263121 0.1897132708 0.1897055209 30 -2.2E-06 2.3E-07 1.8E-08 -7.7E-10
31  0.1694486681 0.1615956221 0.1595540218 0.1593804660 0.1593885055 31 -1.0E-06 -2.2E-07 ~-1.7E-08 8.0E-10
32 0.0760223149 0.0665618896 0.0668809699 0.0668366602 0.0668%69969 32 -9.2E-07 2.8E-08 -4 .4E-09 3.4E-11
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FIG. 4. Mode 1 for the Munk profile with an elastic bottom.
R,=615E4+3 r(+) R,=1L19E+5 rjfx), Ry=224E—-2 r(+),
R,= —8.ME—1rx) :

errors are reduced by as much as a factor of 1000 with each
extrapolation. The quantity ET in these tables is the execu-
tion time required on the Northwestern Cyber 170/730 to
compute all the given eigenvalues for the indicated mesh
width. The row labeled “N,/N,” is the ratio of the number of
subintervalsin the ocean to the number of subintervals in the

FIG. 5. Mode 10 for the Munk
Ri= —612E4+3 r(+) Ry=1352E+5 rfx) Ry=—2TE-2
nl+), Ry=141E+ 0 ry(X).

profile with an elastic bottom.
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5750.0

FIG. 6. Mode 21 for the Munk profile with an elastic bottom.
Ri=106E+3 ri+), R,=32TE+4 ni{X), R,=445E—-13 nr+),
R, = 4.66E — 1 r{X).

bottom. We observe that the execution times are less for the
finer meshes, thus demonstrating the merit of using Ri-
chardson extrapolations to generate initial guesses.

In Figs. 1-3 we have graphed the eigenfunctions for
modes 3, 9, and 15. The scaling information is given in the
figure captions. The vector (p,r,7,r5,7,) has been scaled
such that max|p(z)| = 1. These modes are representative of
three classes of modes which exist for this problem. The first
class, modes 1-7, are seismic modes, i.e., modes which have
phase velocities less than the sound speed in the ocean and
are consequently evanescent in the ocean. The second class
df modes, modes 8-10, have a phase velocity greater than
both the S-wave speed in the bottom and the sound speed in
the ocean but less than the P-wave speed in the bottom.
These modes are oscillatory in the ocean, but only the S-
wave potential is oscillatory in the bottom, as we can show.
The third class of modes, modes 11-18, have a phase speed
greater than the S- or P-wave speeds in both the ocean and
the bottom and are therefore oscillatory throughout the re-
gion.
The second example that we consider is an ocean with a
Munk sound speed profile overlying a relatively rigid bottom
with linearly increasing § and P wave speeds. The parameter
values for the Munk profile are those previously employed,?

wo=8x/s, D, =5000m, D,=6000m,

¢(2) = 1500[ 1 + 0.000737(x — 1 + e~ *)]m/s, (20)
- x = 2(z — 1300)/1300.
The P and S wave speeds are taken as
c,(z) = 4700 + 100(z — D, )/(D, — Dyjm/s, a1)

¢,(z) = 2000 + 100{z — D,)/{D, — D,)m/s.
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TABLE V. Comparison of eigenvalues for the Munk profile with an elastic

bottom and a rigid bottom.
e
3 Elastic Rigid
1 0.29048241BE-03
2  0.27853790E-03  0.27853790E-03
3 0.27442T24E-03  0.27442742E-03
4  0.27058318E-03  0.27059198E-03
5 0.26688503E-03  0.26704188E-03
6  0.26298093E-03  0.26397293E-03
7 0.25B44T75E-03  0.26073984E-03
8 0.25312300E-03  0.25635956E-03
9 0.24699737E-03  0.25098018E-03
10 0.24008640E-03  0.244T74192E-03
11 0.23240706E-03  0.23768501E-03
12 0.22397926E-03  0.22982337E-03
13 0.21483124E=03  0.22116310E-03
14  0.20500893B-03  0.21170732E-03
15  0.19459388E-03 0.20145785E-03
16  0.18373490E-03  0.19041582E-03
17T 0.17266945E-03 0.17858200E-03
18 0.1615T7750E-03  0.16595691 E-03
19  0.1502307T4E-03  0.15254093E-0%
20  0.13860457E-03  0.13833434E-03
21 0.12970121E-D3 0.12333734E-03
22 0.12080100E-03  0.10755009E-03
23 0.10724241E-03  0.90972T17E-04
24  0.92603246E-04  0.T3605315E-04
25 0.8044134BE-04  0.55447959E-04
26 0.70059102E-04  0.36500712E-04
2T 0.54618422E-04  0.16T763621E-04

28 0.39255414E-04
29 0.34245314E-04
30  0.18970552E-04
31 0.15938851E-04
32 0.66836997E-05

The numerically obtained eigenvalues and their errors for
typical meshes are given in Table ITI. Successive extrapola-
tions and their errors are given in Table IV. The column
labeled “exact™ in Table I1I{a) was obtained by our program
using higher-order extrapolation. For this problem there ex-
ist eight classes of modes including an interfacial mode char-
acterized by evanescence away from the interface. Represen-
tatives of some of these classes of modes are graphed in Figs.
4-6. '

The significance of the elastic bottom is illustrated in
Table V in which we have presented the eigenvalues for this
problem and the eigenvalues for a problem with the same
sound speed profile in the ocean but with a rigid bottom.
Naturally, there is no equivalent for the interface mode.
Modes 2-6, which are trapped in the duct of the Munk pro-
file are largely unaffected by the bottom model as expected.
In contrast, the highest-order modes of the two models ap-
pear to be completely unrelated. These results demonstrate
that with relatively rigid ocean bottoms, some energy is cou-
pled into the bottom by modes which are not trapped in an
ocean duct.
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