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The method of normal modes is frequently used to solve acoustic propagation problems in

stratified oceans. The propagation numbers for the modes are the eigenvalues of the boundary

value problem to determine the depth dependent normal modes. Errors in the numerical

determination of these eigenvalues appear as phase shifts in the range dependence of the acoustic

field. Such errors can severely degrade the accuracy of the normal mode representation,

particularly at long ranges. In this paper we present a fast finite difference method to accurately

determine these propagation numbers and the corresponding normal modes. It consists of a

combination of well-known numerical procedures such as Sturm sequences, the bisection .
method, Newton’s and Brent’s methods, Richardson extrapolation, and inverse iteration. We also

introduce a modified Richardson extrapolation procedure that substantially increases the speed

and accuracy of the computation.

PACS numbers: 43.30.Bp, 43.20.Bi, 92.10.Vz, 43.30.Jx

INTRODUCTION

The acoustic pressure produced by a time harmonic
point source in a stratified ocean of constant depth D has a
normal mode representation, which is proportional to

Pzt =~ 3 4)(zad(2lH 14, 1)

Here, the dimensionless radial and depth variables » and z
are obtained by dividing the dimensional variables by D (the
z coordinate is directed downward from the ocean’s surface),
HY)7) is the Hankel function of order zero and of the first
kind and w and z,, are the angular frequency and depth of the
source, respectively. In addition, the propagation numbers
A; and the normal modes ¢, (2) are the eigenvalues and eigen-
functions, respectively, of

"+ [k*/c*z2) — A% =0, for O<z<], 2)

#0)=0, ¢'(1)=0. 3)
In (2), c(z) is a dimensionless ocean sound speed that is ob-
tained by scaling the physical sound speed by a reference
sound speed ¢, and k 2 is the dimensionless wavenumber that
is defined by

k*=w>D?*/c2. 4
The boundary conditions in (3) imply that the ocean surface
z =0is free, i.e., it is the pressure release condition, and the
. ocean bottom z = 1 is rigid. -

In (1), the eigenfunctions are normalized by the condi-
tions

fﬁ(z)dz =1, j=12,... (5)
(]

There are only a finite number of eigenvalues 4; of (2) that
are real. Then by the properties of the Hankel function they
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correspond to propagating modes in the sum (2). The re-
maining eigenvalues correspond to evanescent or nonpropa-
gating modes. By employing the large argument asymptotic
expansion of the Hankel function we obtain the farfield re-
presentation as

e—l‘fr/4 2 1/2 o i —w
Explicit solutions of (2) can be obtained only for relatively
simple sound speed profiles ¢(z). The profiles encountered in
the ocean are usually sufficiently complex that numerical
methods are employed to solve (2). For example, coefficient
approximation methods™” and shooting methods®* are
widely used. Typically, the errors in the cigenvalues 4; that
are determined from numerical solutions of (2) increase with
J- Furthermore, as we observe from either (1) or (6) these
errors appear as phase shifts in the range dependence of p. .
Specifically, the phase shifts are porportional to the products’
of these errors and 7. Thus, if 7 is large, as occurs in long-
range propagation, the phase shifts caused by the numerical
errors in A; will seriously degrade the accuracy of the series
representations (1) and (6). This suggests the need for ex-
tremely accurate determination of the eigenvalues of (2).

In addition, we observe that if k is large, which occurs
for “high-" frequency sources and/or deep oceans, the num-
ber of propagating modes is large. These and other factors in
the repeated use of (1) to represent acoustic fields suggest
that the numerical methods must be fast in addition to accu-
rate. In this paper we present a numerical procedure which
satisfies these requirements. It is a combination of known
numerical techniques such as finite difference approxima-
tions and Richardson extrapolation.

The method is described in Sec. II and it is then applied
in Sec. III to two examples to demonstrate its speed and
accuracy. The Munk profile’ is employed for the sound
speed in the first example. The second example demon-
strates the ability of the method to handle sound speed pro-
files with multiple ducts. This particular double-duct profile
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is difficult to solve numerically because of the approximate
symmetry of the ducts and the concomitant near-degeneracy
of the eigenvalues.

In Sec. IV we present a brief discussion of the relation-
ship between the present method and shooting methods for
solving (2). A possible improvement in these shooting meth-
ods is suggested by this discussion. Applications and exten-
sions of the method to more complicated ocean acoustics
problems such as propagation from a time harmonic source
in an ocean resting on an elastic bottom will be presented in
future publications. Then modifications in the numerical
methods are required for treating the elastic bottom, as we
will demonstrate.

I. THE METHOD

To solve (2) numerically we first define a mesh by divid-
ing the interval 0 <z < 1 into N equal intervals by the points
2; = jh, i =0,1,...,N where the mesh width A is defined by
h = 1/N. Then using the standard three point difference ap-
proximation to the second derivative in (2) and the centered
difference approximation to the first derivative in (3), we ob-
tain the algebraic eigenvalue problem

Ab=pt; p=A"h’ ™
as an approximation to the eigenvalue problem (2). Here, is
the N-dimensional vector with components ¢,, @,,..., dy.
These components are approximations to the eigenfunctions
of (2) evaluated at the mesh points. In addition, the tridia-

gonal N X N matrix A is defined by
a 1 0 0 .. 0
1 a 1 0 0
0 1 a 1 0 0
A= e ;@
0 0 1 ay, 1
0 . 0 2 ay
where the coefficients a; are defined by
a=2—-k%¥z), i=12,...N. (9)

We use the Sturm sequence method®? to solve the algebraic
eigenvalue problem (7) for a fixed mesh size N. Thus we con-
sider the sequence S}, S5,...,Sy which is defined by

$=1, S;=p—a,

Si=p—a)S;_ —8i_;, i=2,.,N—-1, (10)

Sy=lp —ay)Sy_, — 28y _,.
This sequence has the following two properties that we em-
ploy:

(1) S; is the ith principal minor of the matrix j./-A, so

that Sy, is the characteristic polynomial.

(2) For a fixed zz, the number of sign changes in the

sequence {S5;} is equal to the number of eigenvalues

greater than yz, where zeros in the sequence are deleted.
In the first step of the method wé find an isolating interval for
each eigenvalue y4;, i.e., an interval in z: which contains only
the eigenvalue ;. For the first, or largest, cigenvalue an up-
per bound is obtained from Gerschgorin's theorem.® Zero is
taken as the lower bound since only propagating modes
(positive eigenvalues) are to be obtained. This interval is suc-

245 J. Acoust. Soc. Am., Vol. 76, No. 1, July 1984

cessively bisected until it contains only the first eigenvalue, a
condition that is determined by counting the sign changes in
the Sturm sequence. This process is repeated for each subse-
quent eigenvalue. Now, however, the previous eigenvalue’s
lower bound is an upper bound for the next eigenvalue. In
addition, lower bounds for the current eigenvalue may have
already been computed during the bisection process for the
previous eigenvalues. The isolating intervals provide initial
estimates for each eigenvalue. More accurate approxima-
tions of each eigenvalue are then obtained by solving the
characteristic equation by Brent’s method® which combines -
bisection, linear interpolation, and inverse quadratic inter-
polation. Convergence is then guaranteed to the isolated
eigenvalue.

In Richardson’s extrapolation method®'® improved es-
timates of the eigenvalues of the continuous problem (2) are
obtained from the approximations of the eigenvalues u, (4 ) of
the algebraic problem (7). In the standard extrapolation
method the converged numerical value with mesh width A
for the jth eigenvalue s, (A ) is expressed as
) =40 + bR+ bR et by, _yhEN (1)
Here, p17/h? is the Richardson approximation to :l!, the
square of the jth eigenvalue of (2). The constant £ is then
determined from the algebraic system that results from ap-
plying (11) to a sequence of successively finer meshes
{h;} = h\,hy...,h,, . Since this approximation depends on
the sequence of nmsh widths that is employed we denote the
Rlchardson approximation corresponding to the meshes A,

Ay g 1oeesftp s g BY 1(Ds-..p + q). Successive extrapolations
are generated recursively by the relation
By +9) _
hoje+lp+g)— o 1rp +9—1)

2 2
"r _”.pﬂir

(12)
as we can obtain from (11).

In this paper we employ a modified Richardson extra-
polation procedure which was motivated by the analysis in
Ref. 11. Thus the Richardson expansion (11)is now replaced
by

wth) = [w(h) — 0]

=i +bh? + bh* 4 4 by, yhHm N, (13)
Here the eigenvalues 1 /(0) and g](A ), which are defined by
#O=h*[k? — (j — }Pa’],

pilh)=h*(k* — { [sinfj — Yk /21/1h /2)}7), (14)
are the exact eigenvalues of (2) and (7), respectively, with
c=1. That is, they are the exact eigenvalues of the contin-
uous and algebraic eigenvalue problems for the isovelocity
profile. Then the modified Richardson approximations 4}
are computed as before but now using (13). The recursion
formula (12} also applies to these modified extrapolation
eigenvalues. The analysis in Ref. 11 suggests that the modi-
fied extrapolation method moderates the error growth with
increasing mode number.

The Sturm sequence procedure for isolating each eigen-
value of the algebraic system is used only for the first mesh,
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i.e,, for h = h,, and not for the subsequent meshes. Initial
guesses for the eigenvalues corresponding to the second and

- subsequent meshes are obtained by using the modified extra-
polation procedure but extrapolating to the desired mesh
size. Thus, for the second and subsequent meshes, isolating
intervals for the eigenvalues are not obtained and Brent's
method is not applicable. Therefore, Newton's method is
employed, starting from the initial guesses to solve for the
numerical eigenvalues.

The mesh selection is motivated by two considerations.
First, if the mesh is refined too rapidly, then the initial guess
obtained from the previous mesh may be sufficiently inac-
curate that the Newton iteration converges to the wrong
mode. Furthermore, if the meshes are refined too slowly
then the extrapolation is not as effective. We have found it
convenient to use the following meshes:

N= [—]3%100,120,150,190,250,320,400,500)]. (15a)
m=(k /m]. (15b)

Here, m is an estimate of the number of propagating modes
which is obtained from the isovelocity profile, c=1. The
square brackets in (15) denote the integer part of the quanti-
£ Afiter the eigenvalues are obtained to the desired accu-
racy, the eigenvectors are found by inverse iteration®’ using
the difference equations and eigenvalues of the final mesh.

A related extrapolation method was previously devel-
aped for the one-dimensional Schrédinger equation.'” The
present method has the following new features which pro-
vide improved speed and accuracy.

{1) A quadratically convergent root finder is employed
rather than the linearly convergent method of bisection pre-
sumably used in Ref. 12.

(2) The eigenvalues of the previous mesh are used to
provide the initial guesses for the eigenvalues of the next
refined mesh.

{3} We use a modified Richardson extrapolation proce-
dure. -
Finally, we remark that we have experimented with
generalizations of our finite difference methods by using Nu-
merov’s method® and a five-point difference scheme to ob-
tain more accurate approximations to {2). We find that the
standard three-point difference scheme is both simpler to
implement and more efficient than these higher order
schemes. When a fourth-order difference scheme, such as
Numerov’s method, is used in the extrapolation procedure,
the error in the eigenvalues has the following form:

i) =] + bh* + bh ® + - (16)
Consequently, each extrapolation increases the order of the
method by two, and after L extrapolations it is a
4 + 2(L — 1) order method. This same order can be obtained
with L + 1 extrapolations using the standard three-point
difference scheme; however, the standard scheme requires
about half as much computation time for the same number of
mesh points.

‘We have also applied extrapolation techniques to a co-
efficient approximation scheme using constant sound speed
layers and find the present method to be more efficient.
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1l. APPLICATIONS OF THE METHOD

We now present two applications of our method to
demonstrate its convergence properties, speed, accuracy,
and versatility. In the first problem we consider a deep ocean
with a Munk sound speed profile. Thus we have

TABLE L. Numetical eigenvalues £ (p) = [1,(p)/% 2] 3 10°/(S000)? for the
Munk profile.

N=

268
2.8570
J &

3.356383 1
3.2991005
32470718
31987746
3154173 1
31043750
3.0368104
29559009
2.862 5216
27571242
41 2640058 2
2.511 6449
23722043
22220665
2.061 5768
1.891098 4
17110133
1.521 7225
73 1.3236459
1.117221 8
81 0.902 %06 22
0.681 117 85
0.452 507 47

2l
1.5820
2

33563827
3.299087 5
3.2470319
3.198 697 6
31540630
31041172
3.0362991
29549819
2.860984 3
27546959
26363970
2.506 3325
23647393
22118575
20479367
18732382
1.688037 1
14926220
1.2872964 12565818

10723775 10344263

0.348 196 84 (.801 821 45
0.615099 53 0.558 99605
0.373 44405 0.306 188 65

402
1.6980
£0)

3.356 382 4
3299076 6
32469987
3.198633 4
3153913
31039021
3.0358725
2.9542144
2.859699 6
2.752 6651
2.6333325
2.501 8819
2.3584789
2.203 2869
2.0364726
1.858 209 1
1.668 6777
1468068 7

509
1.5970
54

3.356 3822
32990694
3.246976 8
3.198 5910
31539108
31037597
3.035 5899
29537058
2.858 8477
27513176
2.6312979
2498 9249
23543165
2.197 583 8
2.028 8375
1.848 190 5
16557599
1.451 668 1
1.236043 1
10090191
0.770 736 41
0.521 34191
0.260 938 84

TABLE II. Errors in numerical eigenvalues e,(p) = [4; — pslp)/h *]/(5000)
for the Munk profile.

N= 268 321 402 509

ET= 2.8570 1.5820 1.6980 1.5970

i &(l1) g(2) (3) gl4)
1 —12E—-09 —87E—10 —56E—10 —34E—10
5 —~43E—08 —3.0E—08 —19E—-08 —LIE—0O8
9 ~13E—07 —9.1E—08 —58E—08 —3.6E—08
13 —25E—07 —11E—07T —1L1IE—07 —7.0E—0O8
17 —36E—07 —25E—07 —1.6E—07 —1.0E-—07
21 —85E—07 —S59E—07 —37E—07 —23E—07
25 —16E—06 —1.1E—06 —7.5E—07 —4.6E—07
29 —30E—06 —21E—06 ~13E—06 —84E—07
33 —~S0E—06 —35E—06 —22E-—06 —14E—06
37 —BO0E—-06 —56E—06 —35E—06 —22E—06
41 —12E—-05 —B4E—-06 —54E—06 —33IE—-06
45 —LTE—05 —12E—05 —718E—06 —4.9E—06
49 —24E—05 —1JE—05 —-11E—-05 —69E—06
53 —33E—~05 —23E—05 —L5E—05 —9.5E—06
57 ~45E—05 —3.1E—05 —20E—05 —1.2E-05
61 —59E—05 —41E—05 —26E—05 —16E—05
65 —716E—05 —53E—05 —34E—-05 —21E—05
69 —97E—05 —68BE—05 —43E—05 —27E-05
73 ~12E~04 —85E—-05 —54E—05 —34E~05
77 —1L5E—04 —10E—04 —~68E—-05 —42E—-05
81 —18E—04 —12E—04 —83E—05 —52E—05
85 —22E-04 —15E—04 —10E—04 —63E—05
89 —26E-—04 —1.BE—04 —12E—04 —7.6E—05
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k=290, clz)=1+000737(x — 1 +¢),

where x(z)=100z/13 — 1, (17)

where we have used parameter values suggested by Dozier?;
see Ref. 5 for a typical graph of ¢(z). In Table I we present
selected scaled numerically determined eigenvalues £; of the
corresponding algebraic problems (7) for the mesh widths
indicated in the table. Recall that # = 1/N, and see Table I
for the definition of £;. In Table II the errors () in these

numerical eigenvalues are shown. The error is the difference
between the numerically determined eigenvalues given in
Table I and the “exact” eigenvalues. The exact eigenvalues
are defined as numerically determined by our method using
extrapolations with several more refined meshes. We ab-
serve that for each mesh the errors increase monotonically
with the mode number j. The symbol ET in the tables de-
notes the execution time in seconds on the Northwestern
Cyber 170/730 to compute all the eigenvalues correspond-

TABLE IIL Standard extrapolations £ (p,....p + g} = [40(p,....p + q)/h*] X 10°/(5000)” for the Munk profile.

N= 268 321 402 509

j &0 £(12) £(1,2.3) £(1234)

1 3.356 383 146 9 3.356 381 886 2 3.356 381 886 3 3.356 381 886 3

5 3.299 100 567 8 3.299 057 468 1 3.299057 4929 3.299 057492 8

9 3.2470718156 3.246940 3105 3.246 940454 3 3246940454 1
13 3.198 774 6315 3.198 5204080 3.198 5208050 3.198 520804 1
17 3.154173 1417 3.153 809665 1 3.153 8105878 3.153 810581 4
21 3.104 375 068 2 3.103 523 956 4 3.103 523 706 2 3.103523702 4
25 3.036 810401 6 3.0351229296 30351211782 3.0351211679
29 2.955 9009269 29528674236 2.952 8616278 2.952 861 605 1
33 2.862 5216362 2.857 4472183 28574328376 2.8574327907
37 2.757 124 228 5 2.749 108 991 6 2.749 078 358 9 2.749078 264 8
41 2.640058 204 5 2.627973 4887 2.627 9144302 2.627914 2476
45 25116449357 2.494 109953 3 2.494 004 068 3 24940037247
49 2.372204 3890 2.347 5637009 2.347 384 262 2 2.347 3836354
53 2.222 066 584 4 2.188 368 5870 2.188078 029 2 2.188076 9204
57 2.061 576 888 3 2.016 5534170 2.016 1003820 20160984785
61 1.891 098 469 1 1.832 145608 0 1.831 4615196 1.831458 3437
65 1.711 0133199 1.6351734994 1.634 168 6402 1.634 163 481 5
69 1.521 722 500 3 1.425 667 959 1 1.424 227027 4 1.424218 8537
73 1.323 6459219 1.203 663 606 3 1.201 6407305 1.201 628 074 8
77 1.1172218518 0.969 199 819 37 0.966 413 013 06 0.966 393 829 85
81 0.902 906 229 44 0.722 321 620 31 0.718 546 661 74 0.718 518 148 31
85 0.681 171 853 07 0.463 080 487 83 - 0458044212 18 0.458 002 588 93
89 0.452 507 470 56 0.191 535 128 86 0.184 908 123 41 0.184 848 366 49

TABLEIV. Errors in standard extrapolations ¢, (p,....p + ¢) = [4, — pj’ e + Q)R ] /(5000)? for the Munk pro-

file.
N= 268 321 402 509
j (1) ¢(1,2) (1,2,3) ¢(1,2,3,4)
1 —12E-09 14E—13
5 . —43E-08 24E—11 —20E—-14
9 — 1.3E-07 14E — 10 —20E-13
13 —2.5E—-07 39E—-10 —83E—-13
17 —3.6E—-07 9.1E~ 10 —63E—12
21 —8.5E—07 —25E-10 —~37E-12
25 — 1.6E — 06 —1.7E-09 —10E-11 2.6FE — 14
29 — 30E—-06 —58E—09 —22E—11 6.5E— 14
33 — 5.0E —06 —14E—-08 —4,6E—11 14E — 13
37 — 8.0E — 06 —3.0E—08 —93E—-11 28E—13
41 — 1.2E—-05 — 59E —08 —1.8E—10 5.1E—13
45 —1.7E-05 — 1.0E - 07 —34E-10 8.6E—13
49 —24E-05 —1.8E-07 —6.2E—-10 1L3E—12
53 —3.3E-05 —29E-07 —~11E-09 1.9E — 12
-57 —4.5E—05 —45E-07 —1.9E —-09 2.6E—12
61 —59E—-05 — 6.8E—07 —31E-09 31E-12
65 — 7.6E — 05 — 1.0E — 06 —51E-09 3.0E - 12
69 —9.7E—-05 — 1.4E — 06 —81E—09 1.6E — 12
73 —12E—04 —2.0E —06 —1.2E —08 —23E—12
77 —1.5SE—-04 —28E—06 — 19E—08 —10E~-11
81 —1.8E—04 —3.8E—06 —2.8E—08 —27E—-11
85 —22E—-04 —5.0E—06 —4.1E—-08 —55E—11
89 —26E—04 — 6.6E — 06 —59E-08 —10E-10
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ing to each mesh width.

The results of successive standard Richardson extrapo-
lations are shown in Tables III and IV. Of course, the first
columns in Tables II and IV are equal. However, a compari-
son of the subsequent columns in Tables IT and IV shows the
dramatic decrease in the errors that are achieved by the ex-
trapolation. Typically, each successive extrapolation re-
duces the error by a factor of 100-1000. The 100-fold error
reduction which is obtained with one additional extrapola-

tion would require a ten times finer mesh and a similar in-
crease in execution time if it were obtained simply by mesh
reduction. The dots in the tables indicate errors which are
within the accuracy of the root finding technique. They are
not explicitly given because they are believed to be insignifi-
cantly small.

The eigenvalues obtained using the modified extrapola-
tion process are given in Tables V and VI. In comparison to

the standard extrapolations of Tables III and IV, the growth

TABLE V. Modified extrapolations &, (p,....p + ) = [£%(p,....p + g)/h*] X 10°/(5000}? for the Munk profile. -

N= 268 321 402 509

j & £ £01,23) £,234

1 3.356 383 146 6 3.356 381 886 2 3.356 3818863 3.356 3818863

5 3.299098 7142 3.299 057 468 0 3.2990574929 32990574928

9 3.247048 2249 324694013051 3.246 940 454 3 3246940454 1
13 3.198 664 3410 3.198 520 3530 3.198 520 805 0 3.198 520804 1
17 31538384824 31538093742 3.153 8105877 3.1538105814
21 3.103578 1970 3.103 522 8870 3.1035237057 3.103523702 4
25 3.035 186053 8 30351198159 30351211762 3.035121 1679
29 29529294489 29528597149 2.952 8616209 2.952 861 605 1
33 2.857 502 3577 2.8574302840 2.875432818 1 2.857432790 6
37 2.749 1492323 2.749075050 6 2.749078 309 § 2.749078 264 8
41 2.627 986 5520 26279102271 2627914316 8 2.627914 2475
45 2.494 077 404 7 2.493 998 791 6 2.494 003 827 8 2.494 0037245
49 2.34745877192 23473776755 2.347 3837840 2.347 383 6349
53 2.188 153644 8 2.188 0698104 2.188 077 128 9 2.188076 9193
57 2.016 176 920 1 2.016 0900849 2.016 098 764 4 2016098 476 3
61 1.831538 654 3 1.831 448 5212 1.831458 7278 1.831458 3394
65 1.634 245 826 6 1.634 1520712 1.634 163988 6 1.634 1634732
69 1.424 303 4120 1.424 205 681 4 1.424 2195130 1.424 218 838 7
73 1.201 7150380 1.201 612948 1 1.201 628 9199 1.201 628048 5
77 0.966 483 402 70 0.966 376 535 37 0.966 394 899 14 0.966 393 784 78
81 0.718 610 549 37 0.718 498 448 21 0.718 519 485 14 0.718 518 073 40
85 0.458 098 050 49 0.457 980 216 36 0.458 004 241 35 0.458 002 467 47
89 0.184 947 134 63 0.184 823 020 29 0.184 850 386 78 0.184 848 173 95

TABLE VI. Errors in modified extrapolations &, p,...p + ¢) = [4; — T

P + 4)/h*]/(5000)? for the Munk pro-

file.

N= 268 321 402 509

j 3(1) ¢,(1,2) 8,(1,2,3) §(1,2,3,4)
1 —12E-09 1.4E — 13
5 —4.1E—-08 24E — 11 —20E—14
9 — 1.0OE — 07 14E — 10 —20E-13

13 — 14E - 07 4.5E— 10 —82E—13

17 —2.7E—08 1.2E—-09 —6.2E — 12

21 —54E —08 8.1E— 10 —32E-12

25 — 6.4E — 08 1L.3E—09 —83E-—12 27E— 14
29 —6.7E — 08 1.BE—09 —1L5E—11 6.7E — 14
33 — 6.9E — 08 2.5E—09 —27E-11 1.5E-13
37 —7.0E — 08 32E-09 —44E—11 31E-13
41 —172E—-08 4.0F —- 09 —6.8E—11 59E— 13
45 —73E—08 4.9E — Q9 —1.0E—10 1.0E — 12
49 — 7.5E—-08 5.9E—09 —14E—-10 1.8E— 12
53 — 7.6E — 08 71E—-09 —2.0E—-10 3.0E—12
57 — 7.8E—08 8.3E —09 —28E-10 48E—12
61 — 8.0E — 08 9.8E — 09 —38E-10 74E — 12
65 —8.2E—08 1.1E — 08 —50E—-10 1LIE— 11
69 — 8.4E 08 1.3E - 08 —6.5E—10 1.6E — 11
73 — 8.6E—08 1.5E — 08 —~84E— 10 24E — 11
77 — 8.9E —08 1.7E — 08 —1.0E-09 J4E— 11
81 —9.2E — 08 1.9E — 08 —13E-09 47E—11
85 - —9.5E —08 22E—08 — L7E—-09 6.6E — 11
89 —9.8E — 08 2.5E — 08 —21E-09 9.0E — 11
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in the error with increasing mode number is dramatically
reduced. This occurs particularly for the coarser meshes.
Thus the numerical results suggest that if the speed of com-
putation is a controlling factor in the computation, so that
the least refined mesh consistent with accuracy is desired,
the modified extrapolation procedure then becomes more
effective.

Some selected numerically determined modes are
shown in Fig. 1. For convenience in presenting the graphs,
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s .n}_/\
T 1000.0  2000.0 30000 %000  SN00.0
z
-1
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8 a
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T va\/ vo Z\T.« 40000  5000.0
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FIG. 1. Selected modes for Munk sound speed profile as a function of Z.
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FIG. 2. Sound speed profile for the double-duct problem foranoccan'af
depth D = 2000 m as a function of the dimensional depth variable Z.

the modes have been normalized by

max|g(@) =1,
<z<l

rather than by (5). With these parameter values only modes
17 and 18 are refracted-surface reflected modes.

We now consider the double-duct profile sketched in
Fig. 2, where
k*=64000, ¢*= ! .
1+ (0.6 + 0.82)(1 — cos 472)/64

(18)

The first nine eigenvalues at several meshes are displayed in
Tables VII and VIII and the corresponding eigenfunctions

TABLE VII. Numerical eigenvalues &(p) = [12;(p)/h?] X 10%/{2000§ for
the double-duct problem.

N= 120 144 180 228

ET= 0.1670 0.0980 0.0910 0.1000
j &) &) £0) &4
1 1.652 698 1.652 695 1.652 693 1.652 691
2 1.638 335 1.638 322 1.638 312 1.638 305
3 1.634 161 1.634 159 1.634 158 1.634 157
4 1.625 217 1.625 189 1.625 165 1.625 150
5 1.622 580 1.622 572 1.622 566 1.622 561
6 1.613 684 1.613 640 1.613 605 1.613 581
7] 1.612 290 1.612272 1.612 285 1.612 249
3 1.604 679 1.604 638 1.604 605 1.604 582
9 1.603 265 1.603 233 1.603 206 1.603 189

TABLE VIIL Errors in numerical eigenvalues & (p) = [, — 1, (p)/h*)/
(2000)? for the double-duct problem.

N= 120 144 180 28
ET= 0.1670 0.0980 0.0910 0.1000
i &) 2) 413 &4

—92E-08 —64E—-08 —4.1E—-08 —2.5E-08

1
2 —41E-07 —28E—-07 —18BE—07T —1L1E—0Q7
3 —60E—08 —42F—08 —27E—08 —16E—D0O8
4 —93E—07 —64E—01 —41E—-07 —-25E-O7
5 —26E—-07 —1BE—-07 —1L1E—07 —72E—08
6 —14E—-06 —97E—-07 —62E—07 —38E—07
7 —56E—07 —39E—-07 —25E—07 —15E-07
8 -~ 13E—06 —92E—07 —5BE—07 —3.6E-07
9 —1LOE—06 —73E—07 —47E—07 —29E-—07
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are graphed in Fig. 3. For the parameters (18) there are ap-
proximately 80 propagating modes. The execution times re-
flect only the time required to compute the first nine eigen-
values. Successive extrapolations using the modified scheme
are given in Tables IX and X.

As may be seen from Tables III-VI the modified extra-
polation procedure is superior to the standard Richardson
extrapolation with the most dramatic improvements ob-
tained when the error is largest, i.e., for high-order modes,
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coarse meshes, and low-order extrapolation. For example,
the modified extrapolation procedure is particularly effec-
tive for the RSRBR (refracted surface-reflected bottom-re-
flected) modes. In the double-duct problem, in which we
computed only the RR (refracted-refracted) modes the stan-
dard and modified extrapolation procedures would yield vir-
tually identical results.

The merit of using the modified extrapolation scheme
to generate an initial guess is demonstrated in Table X1, in

FIG. 3. First nine modes for the double-duct problem.
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TABLE IX. Modified extrapolations &(p,..- + @) = [AXp.--@ + gk 1] x 10°/{20001? for the double-duct problem.

N= 120 144 180 228

i Al 5,(12) 5(1.23) 5,234

1 1.652 698 326 2 1.652 689 031 8 1.652 689 041 4 1.652 689 041 4
2 1.638335370 1 16382936937 16382937742 1.638293 7740
3 1.634 160876 1 1.634 1553299 1.634 1553353 1.634 1553353
4 1.625 215 526 4 1.625 123 968 3 1.625 124 262 1 1.625 124 261 0
5 1.622 5750578 1.622 5544197 1.622 554 4652 1.622 554 465 1
6 1.613671 1647 1.613 542 1709 1.613 542944 3 1.613 542941 4
7 1.6122650958 1.612233 3952 1.612233 5413 16122335402
8 1.604 635314 1 1.604 544 596 4 1.604 546 339 8 1.604 546 329 7
9 1.603 1923497 1.603 1598105 1,603 159759 5 1.603 159758 8

TABLE X. Errors in modified extrapolations & (p,....» + @) = [4, — A{p.-...p + g)/h*] /(2000)? for the double-duct

problem.

N= 120 144 180 228
i & 30.2) &(1,23) 4(1,2,3.4)
1 —92E—-08 96E—11 —16E—13
2 —4.1E-07 BOE— 10 —23E-12 29E—14
3 —~55E—08 - S3E—11 —T1E-14
4 —~9.1E—-07 9E— 19 —LIE-11 I5E—14
5 —20E—-07 4.5E — 10 —-99E—13
6 — 1.2E - 06 7.7E—-09 —28E—11 23E-13
7 —3.1E—-07 14E-09 — LOE —11 —50E—14
8 —B.8E—Q7 1.TE—08 — LOE - 10 - 14E — 13
9 —3)2E-07 —51E—-10 —6.5E— 12 6.1E—13

which we compare several techniques applied to the Munk
profile. The first two contain the execution time required at
each mesh when the bisection process is repeated for each
new mesh. In the second two we used a one-point Richard-
son extrapolation, i.e, the eigenvalue from the previous mesh
was used as an initial guess and in the third row we used N-
point extrapolation. In the fourth row we used N-point stan-
dard Richardson extrapolation and finally, in the fifth row
we have used the modified extrapolation procedure and ob-
tained the best results.

Iil. RELATION TO THE SHOOTING METHOD

Some aspects of the finite difference method that we use
are closely related to the shooting method employed by pre-
vious investigators (see e.g., Refs. 3 and 4). The shooting
method using the three-point difference approximation gen-
erates the value ¢, from two preceding values ¢, _, and
¢;_, by the formula

¢t =(ﬂ_ai,¢f—l _161—2- (19}

TABLE XI. Comparison of execution times using different techniques to

Number of mesh points 268 321 402 509
Bisection 30 34 43 54
1 point SRE 28 22 27 34
1 point MRE 28 L5 19 24
N point SRE 30 23 22 24
N point MRE 29 16 1.7 1.6
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The surface boundary condition determines the value
#o = $(0) =0. We define the value of ¢, =@ (h) by ¢, = 1,
since the eigenfunction is known only within an arbitrary
multiplicative constant. The shooting parameter p is then
determined so that ¢, _, = ¢y, ,, ie., until ¢ ’(1) = 0. Ini-
tial guesses for the value of z must be given to apply the
shooting method, e.g., the WK B method has been employed.

Initial guesses for the higher order modes may be ob-
tained by extrapolation from the lower order modes. In addi-
tion, it follows from Sturm—Liouville theory that the jth
mode has j zeros and so by counting the sign changes in the
[#:] sequence it can be verified that convergence is to the
desired mode.

The shooting (19) and characteristic polynomial (10} re-
cursions are identical. Furthermore, the process of counting
zeros is identified with the Sturm sequence property that the
number of sign changes in the sequence is equal to the num-
ber of eigenvalues greater than .

An important difference between the finite difference
and shooting methods is in the computation of the eigenvec-
tors. Since one-sided shooting is unstable when integrating
into intervals in which the solution decays,'? the elements of
the Sturm sequence cannot be used directly to construct the
eigenvectors. Other methods, such as an analog of parallel
shooting,® have been employed for the algebraic eigenvalue
problem to partially obviate this difficulty. However, inverse
iteration, which we employ in the final step of our method
has the computational advantage of not being degraded as
one-sided shooting or parallel shooting would be, for profiles
such as multiple ducts.
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