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Abstract. Channel estimate based equalizers are those for which observations of the received signal
are used to estimate the channel impulse response and possibly the statistics of the interfering noise
field, and these estimates are used to calculate the equalizer filter coefficients. Channel estimate
based decision feedback equalizers (CE-DFE), linear MMSE equalizers (L-MMSE), and Passive
Time-Reversal equalizers (P-TR) are all examples of coherent channel estimate based equalizers.
Equations are derived for analyzing the performance of these channel estimated based equalizers.
The performance is characterized in terms of the mean squared soft decision error (σ2

s ) of each
equalizer. This error is decomposed into two components. These are the minimum achievable error
(σ2

o ) and the excess error (σ2
ε ). The former is the soft decision error that would be realized by

the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel
impulse response and statistics of the interfering noise field. The latter is the additional soft decision
error that is realized due to errors in the estimates of these channel parameters. Here, the impact of
errors in the channel impulse estimation errors onσ2

ε is considered (i.e., the equalizer is assumed
to have accurate knowledge of the statistics of the interfering noise field.). The error equations
allow for a direct comparison of the performance characteristics of these equalizers as well as an
evaluation of the impact of the characteristics of the acoustic channel on equalizer performance.

INTRODUCTION

Adaptive coherent equalizers can be divided into two classes, the first being direct
adaptation equalizers and the second being channel estimate based equalizers. Direct
adaptation equalizers are those for which the filter coefficients of the equalizer are
directly adjusted based upon observations of the received signal. Channel estimate
based equalizers are those for which observations of the received signal are used to
estimate the channel impulse response and possibly the statistics of the interfering noise
field and these estimates are used to calculate the equalizer filter coefficients. Channel
estimate based decision feedback equalizers (CE-DFE), linear MMSE equalizers (L-
MMSE), and Passive Time-Reversal equalizers (P-TR) [3] are all examples of coherent
channel estimate based equalizers. The use of the expressions derived here allows these
three equalizers to be evaluated in the following context: that is, given estimates of the
channel impulse response and the statistics of the interfering noise fields, how do the
three different methods of computing equalizer filter coefficients impact the equalizer
performance?

The format of this paper is as follows. The next section outlines notation as well as



the expressions for the modeled channel impulse response and the equalizer filter co-
efficients. This section develops insights that allows the equalizer filtering problem to
be thought of in terms of "replica vectors" that are derived from the channel impulse
response. The section following that presents expressions for the soft decision error
achieved by each of the three types of equalizers. The expressions are used to develop
insight into the characteristics of channels that most significantly impact equalizer per-
formance, and the relative performance characteristics of the three types of equalizers
are evaluated. Finally, the performance equations for a particular type of channel estima-
tor (the exponentially weighted least squares estimator) are presented and that equation
are used to evaluate a required error correlation matrix.

CHANNEL AND EQUALIZER MODEL

The acoustic channel is modeled as a time-varying, discrete time system described by
the complex baseband input delay-spread function1 (IDSF) [1]. The received signal at
timen is given by

u[n] = g̃h[n]d̃[n]+v[n]. (1)

where
g̃[n]

4
=[g[n,Nc−1], · · · ,g[n,0], · · · ,g[n,−Na]]

t ,and

d̃[n]
4
=[d[n−Nc +1], · · · ,d[n], · · · ,d[n+Na]]

t

are samples of the IDSF and transmitted data symbols, respectively.d[n] is the transmit-
ted data symbol at timen, v[n] is the interfering noise at timen, g[n,m] is the IDSF for
delaymat timen, the superscriptt denotes transpose, and the superscripth denotes Her-
mitian. The quantitiesNa andNc denote, respectively, the number of acausal and causal
taps in the IDSF2.

Throughout this paper, lower case letters denote scalar quantities, lower case bold face
letters denote vectors (all vectors are assumed to be column vectors), and upper case bold
face letters denote matrices. Herein the received signal is assumed to be sampled at the
transmit symbol rate. The extension of the analysis to fractionally spaced systems is
conceptually straight forward, but the notation is cumbersome. The final results of the
analysis are equally applicable to symbol rate and fractionally spaced systems.

The equalizers considered here each consist of a finite impulse response (FIR)feed-
forward filter that filters the received signals and, in the case of the CE-DFE, an FIR
feedback filter that filters and feeds back estimates of the transmitted data symbol.3 The

1 The input delay-spread function is one form of what is more commonly referred to as the time-varying
impulse response
2 Physical underwater acoustic channels are all causal. However, it is sometimes conceptually convenient
to think of some point in delay (the variablem) within the IDSF to be the zero delay tap and those points
that preceed this point in the delay variable to be acausal taps.
3 The development herein assumes a single channel equalizer. The extension to a multichannel equalizer
utilizing a receive array is straightforward and does not alter the results of the analysis.



output of the filter is the soft decision estimate,d̂s[n], of the transmitted data symbol,
d[n]. The estimatêds[n] is the input to a decision device that generates the final estimate,
d̂[n], of the transmitted data symbol.

For a linear equalizer (e.g., the L-MMSE and P-TR equalizers) the soft decision
estimate of the transmitted data symbol,d̂s, is given by

d̂s[n] = hh[n] u[n], (2)

whereh[n] is a vector of the feedforward filter coefficients at timen and

u[n]
4
=[u[n−Lc−1], · · · ,u[n], · · · ,u[n+La]]

t . (3)

Here,Lc andLa denote the number of causal and acausal taps, respectively, of the
feedforward filter. The notationhlin andhtr will be used to denote the filter coefficient
vectors for the L-MMSE and P-TR equalizers, respectively. For the CE-DFE,d̂s is given
by

d̂s[n] = hh
ff [n] u[n] + hh

fb[n]d̂ f b[n]. (4)

Here,hff andhfb are vectors of the coefficients of the CE-DFE feedforward and feed-
back filters, respectively. For a feedback filter of lengthL f b symbols,d̂[n] is a vector of

estimates of past transmitted data symbols given byd̂ f b[n]
4
=

[
d̂[n−L f b], · · · , d̂[n−1]

]t
.

For both the linear and decision feedback equalizers,u[n] is the received signal vector
that is used by the feedforward filter to generate the soft decision estimate. Combining
(1) and (3) yields

u[n] = G[n] d[n] + v[n], (5)

where
d[n]

4
=[d[n−Lc−Nc +2], · · · ,d[n], · · · ,d[n+La +Na]]t

and
v[n]

4
=[v[n−Lc], · · · ,v[n], · · · ,v[n+La]]

t .

G[n] is the sampled IDSF matrix with theith row composed of̃gh[n−Lc + i] packed
with leading and trailing zeros to position it the appropriate columns of the matrix with
respect to the elements of the vectord[n]. It is instructive to representG using its column
vectors indexed in the following manner:

G[n] =
[
g(Nc+Lc−2), · · · ,g1,g0,g−1, · · · ,g−(Na+La)

]
, (6)

The dependence of the columns ofG[n] on the time indexn is suppressed here for
notational convenience. The vectorgi is a replica vector for the data symbold[n− i]
in the received signal vectoru[n]. Partition the transmit data symbols ind[n] into three

groups:d f b[n]
4
=

[
d[n−L f b], · · · ,d[n−1]

]t
, d[n], and do[n] which is composed of the

remaining elements ofd[n]. Partition the columns ofG[n] into three similarly defined
sets:G f b, g0, andGo. Then (5) can be rewritten as

u[n] = g0d[n] +G f bd f b[n] + (v[n]+Godo[n]). (7)



The first term is the portion of the received signal vector,u[n], that corresponds to
the transmitted data symbol to be estimated,d[n]. The second term is the portion ofu[n]
that can be cancelled by the output of the feedback filter in a CE-DFE, and the terms in
the parenthesis represent an effective observation noise that the feedforward filter must
try to eliminate. Assuming that the data sequence is a zero mean, white sequence with
a variance of one4, the data sequence is independent of the channel IDSF andv[n], and
thatv[n] is a zero mean sequence with covarianceRv that is independent of the channel
IDSF, the effective noise correlation matrix,Q, can be written as

Q = Rv + GoGh
o. (8)

With the model and quantities so defined, a number of approaches can be used to
calculate the optimal filter coefficients. One such approach is given in [2]. In that paper,
the effective noise correlation matrix, denoted with the symbolR, includes the impact
of channel estimation errors. Therefore, the calculated filter coefficients and subsequent
error analysis are valid for the case where the DFE has accurate knowledge of both the
noise statistics and the second order statistics of the channel estimation errors. For the
filter calculation and performance analysis presented here, there is no assumption that
the DFE knows the statistics of the channel estimation errors.

The filter coefficients for the three equalizers are calculated using estimated quantities
for Rv andG. In the following expressions, these estimated quantities are denoted by the
hat (e.g.,R̂v). The filter coefficient vectors for the L-MMSE and CE-DFE equalizers are
selected to minimize the mean squared soft decision error (E[| d̂s[n]−d[n] |2] assuming
that the estimates ofRv andG are accurate and that the statistical assumptions stated in
the paragraph before (8) hold. The expressions for these filter coefficient vectors are

hff =
Q̂−1ĝ0

1 + ĝh
0Q̂−1ĝ0

, hfb = −Ĝh
f bhff , and (9)

hlin =
(Q̂+ Ĝ f bĜh

f b)
−1ĝ0

1 + ĝh
0(Q̂+ Ĝ f bĜh

f b)
−1ĝ0

. (10)

The P-TR equalizer is a normalized matched filter so its coefficients are given by

htr =
ĝ0

ĝh
0ĝ0

. (11)

EQUALIZER PERFORMANCE

The performance is characterized in terms of the mean squared soft decision error(
σ2

s
4
=E[| d̂s[n]−d[n] |2]

)
of each equalizer. This expectation is conditioned upon the

estimate of the channel IDSF. This error is decomposed into two components. These are

4 The assumption of unit variance can be made without any loss of generality of the results.



the minimum achievable error (σ2
o ) and the excess error (σ2

ε ) such thatσ2
s = σ2

o +σ2
ε . σ2

o
is the soft decision error that would be realized by the equalizer if the filter coefficient
calculation were based upon perfect knowledge of the channel impulse response and
statistics of the interfering noise field.σ2

ε is the additional soft decision error that is
realized due to errors in the estimates of these channel parameters.

The Minimum Achievable Error

For the three different equalizers, the minimum achievable error is given by

σ
2
od f e

=
1

1 + ĝh
0Q̂−1ĝ0

, (12)

σ
2
olin

=
1

1 + ĝh
0(Q̂+ Ĝ f bĜh

f b)
−1ĝ0

, and (13)

σ
2
otr

=
ĝh

0(Q̂+ Ĝ f bĜh
f b)ĝ0

ĝh
0ĝ0

. (14)

Comparing equations (12), (13), and (14), it can be shown that

σ
2
od f e

≤ σ
2
olin

≤ σ
2
otr

.

Furthermore, it can be shown thatσ2
od f e

andσ2
oline

will always decrease when the number
or received signal channels or the length of the feedforward or feedback filters is
increased.

Note that the minimal achievable error for the DFE is completely characterized by the
quadratic product of the replica vector associated with the data symbol being estimated,
g(0), and the inverse of the effective noise correlation matrix,Q, which represents the
contribution of the observation noise and the acausal data symbols (d[m] for m> n) and
causal symbolsd[m] for which m < n− L f b to the input of the feedforward filter and
the soft data estimate. Thus, the minimal achievable error of the DFE is determined by
the projection of the replica vectorg(0) on both the observation noise correlation matrix
Rv and the replica vectors corresponding to the acausal data symbols and the causal
symbols not canceled by the output of the feedback filter. The structure of the channel
IDSF impacts the minimal achievable error through these replica vectors. Note that in
non-minimum phase channels where there will be a large number of replica vectors
corresponding to acausal channel taps, the minimal achievable error will tend to larger
than in minimum phase channel with comparable delay spreads. An example of one such
class of non-minimum phase channels is the long range, deep water channel.

The Excess Error

The impact of error in the estimation of channel parameters on the performance of
each coherent equalizer is quantified by the excess error,σ2

ε . Here, the impact of errors



in the estimation of the IDSF is considered. Let the true channel IDSF matrix,G[n] be
given by

G[n] = Ĝ[n]+EG (15)

whereEG is the error in the estimate of the IDSF matrix. For analytic simplicity, assume
further thatEG is statistically independent of̂G[n] and has zero mean. Then,

σ
2
εd f e

= hh
ff REG hff , (16)

σ
2
εlin

= hh
lin REG hlin, and (17)

σ
2
εtr

= hh
tr REG htr, (18)

whereREG

4
=E[EGEh

G|Ĝ]. Thus the sensitivity of each equalizer to channel IDSF estima-
tion errors is determined by the magnitude squared of the vector of the equalizer’s feed-
forward filter coefficients and the projection of these coefficient vectors on the eigen-
structure ofREG. For the region of high adaptive processing gain, that isĝh

0Q̂−1ĝ0 >> 1,
and for equalizers with the same feedforward filter length, it can be shown that

| hff |2>| hlin |2> | htr |2 .

Thus, if REG is a scalar times the identity matrix and the equalizers have the same
number of taps in their feedforward filters, the P-TR equalizer will be less sensitive to
channel estimation errors than either the L-MMSE or CE-DFE equalizers. The following
section describes conditions under whichREG will meet this requirement.

Equation (16) is counterintuitive in that the excess error does not appear to depend
upon either the feedback filter coefficients or the errors in these coefficients. This result
can be explained as follows. Combining equations (4) and (7) results in

d̂s[n] = hh
ff [n] (g0d[n] +G f bd f b[n] + v[n]+Godo[n]) + hh

fb[n]d̂ f b[n].

Substituting in (9) forhfb[n], (15), and rearranging terms yields

d̂s[n] = hh
ff [n] (ĝ0d[n] + v[n]+Ĝodo[n]) + hh

ff [n] (Ĝ f bd f b[n]− Ĝ f bd̂ f b[n]) + hh
ff [n]EGd[n].

The expected value magnitude squared of the difference between the first term and
the actual data symbol,d[n], is the minimum achievable error. The second term is
the only term that depends on the feedback filter coefficients. Assuming that the past
symbol decisions are accurate (i.e.,d̂ f b[n] = d f b[n], this term equals zero. The third term
represents the excess error. The expected value of the magnitude squared of this term
equals (16). Assuming that the channel estimation error is independent of the channel
estimate, the transmitted data, and the observation noise, this equals the excess error,
σ2

εd f e
.



CHANNEL ESTIMATION ERROR

To gain insight into the structure ofREG and the impact of channel structure and
dynamics on the error in estimating the channel IDSF, consider the performance charac-
teristics of the commonly used Exponentially Weighted Least Squares algorithm. With
this algorithm, the estimate of the channel IDSF is given by

ˆ̃g[n] = arg min
g

n

∑
m=−∞

λ
(n−m) | u[m]−ghd̃ |2,

where λ is a constant "forgetting factor" between zero and one. Assume that the
channel IDSF,g̃[n], is a zero mean, wide sense stationary random process with

correlation matrix Rg̃[m]
4
=E

[
g̃[n] g̃h[n+m]

]
. Then, the error correlation matrix

Rε

4
=E

[
( ˆ̃g[n]− g̃[n+1]) ( ˆ̃g[n]− g̃[n+1])h

]
is given by

Rε =
2

(1+λ )
Rg̃[0] − 1

(1+λ )

∞

∑
m=0

(
λ m

W

)(
Rg̃[m+1] + Rh

g̃[m+1]
)

+
1

(1+λ )

(
σ2

v

W

)
I ,

whereW
4
=∑∞

m=0λ m = (1−λ )−1. To relate this result to the matrixREG used in (16),
(17), and (18), note thatREG is well approximated by a Toeplitz matrix. Furthermore,
the elements along theith diagonal ofREG are equal to the sum of the elements along
the ith diagonal ofRε . This will be used in the following section to develop intuition
regarding the impact of channel dynamics on equalizer robustness.

For wide sense stationary, uncorrelated scattering (WSSUS) channels,Rε is a diag-
onal matrix thus resulting inREG equaling the trace ofRε times the identity matrix.
Therefore, evaluation of (16), (17), and (18) for this case shows that the excess error for
each equalizer equals the trace ofRε times the magnitude squared of the feedforward
filter coefficient vector for each equalizer. This result is independent of the distribution
of the IDSF estimation error among the taps of the IDSF vector. While these correlation
matrices are not conditioned upon the channel estimate (or equivalently, the calculated
feedforward filter weights) as required to properly evaluate (16) through (18), they do
lend insights into the channel and equalizer characteristics that impact robustness with
respect to channel estimation errors.

CONCLUSION

Expressions for the components of the soft decision error for linear MMSE, deci-
sion feedback, and passive time-reversal equalizers have been presented. The error is
decomposed into a minimum achievable error and the excess error. Evaluation of the
expressions shows that the ranking of the three equalizers from best to worst in terms of
minimum achievable error is the CE-DFE, the L-MMSE equalizer, and the P-TR equal-
izer. However, with simplifying assumptions it is shown that the P-TR equalizer is the
least sensitive of the three to channel estimation errors. Insights are presented into the
channel characteristics that most significantly impact equalizer performance.
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