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Abstract. The results of this paper show how randomness and/or uncertainty of medium, 
boundary conditions, source characterization, and source and receiver motion affects the 
probability of detection of a narrow band, high frequency source. Using ray acoustic model, we 
derive expressions for loss of time coherency and its dual, spectral spreading that is caused 
motion through a medium with random boundary conditions and inhomogeneities.  Spectral 
spreading decreases probability of detection of a narrowband signals. In this analysis both the 
usual knowledge and the essential uncertainty are incorporated into problem formulation by 
separating propagation models and boundary conditions into deterministic and random parts.  
Maximum entropy method (MEM) is used to incorporate essential uncertainty into model. 
Maximum entropy method uses what is known in its model, but models what is not known with 
maximum uncertainty. It does not make any unwarranted assumptions about unknown 
parameters.  MEM is used to calculate confidence intervals and mean values of receiver 
operating characteristics of high-frequency passive and active sonar detectors when signal to 
noise ratio is a random variable.      

INTRODUCTION 

The objective of the research that is presented in this paper to investigate how ever- 
present randomness and uncertainty in propagation medium and source 
characterization affects active and passive high-frequency sonar signal processing.  
Motion of sources and receiver through a propagation medium spatially varying sound 
speed profiles and random boundary conditions is equivalent to signal propagation 
through a randomly time-varying or stochastic propagation medium that causes a loss 
of signal coherence, spectral spreading and an increase of entropy (a measure of 
uncertainty) of the signal.  The difficulty of the performance analysis of sonar is 
further aggravated by uncertainties in source strength, target models, boundary 
conditions, background noise characterization, and system specifications.  All this 
suggests that sonar performance analysis should reflect essential uncertainties and 
randomness of the propagation and system parameters, but the analysis should also be 
based what is known or specified.  This can be accomplished by the maximum entropy 
method (MEM). In this paper we use MEM to derive probability density functions 
(PDF) that are required to calculate confidence intervals and mean values of receiver 
operating characteristics (ROC) of simple active and passive detectors that operate in 
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random/ uncertain propagation medium.  In the case of random medium parameters, 
the detection statistic is a function of these random medium parameters. Thus, the 
exceeding of the detection threshold for a given false alarm probability is a random 
event with a PDF ( )Df θ , where θ is a vector of random parameters. In the simple 
examples presented in this paper, θ is a random signal to noise ratio. Randomness of 
θ incorporates uncertainty of source strength, propagation loss, and background noise. 
We feel that plots that show confidence intervals and mean values of the generalized 
receiver operating characteristics are more effective in displaying the effects of 
uncertainty and randomness of the medium that so called “range of the day.”  A sonar 
operator can use our plots to determine, firstly, what are the confidence intervals for a 
probability of detection at a specified false alarm probability and, secondly, the mean 
propagation loss to a given range.   
      We start with a discussion of modeling of high-frequency propagation in time-
varying random media, next we will present a brief review of the maximum entropy 
method for derivation of probability density functions, then we will present derivation 
of detection statistics for random parameters, and finally we will calculate confidence 
intervals for the random receiver operating characteristics. The basic propagation 
problem that we are considering is a high frequency, multipath propagation with 
random boundary conditions.    
 

 MODELING OF HIGH-FREQUENCY PROPAGATION IN 
TIME-VARYING RANDOM MEDIA 

   
   We assume that both the source (or target) and receiver are in motion in a 
propagation medium with a random boundary and an inhomogeneous sound speed 
profile. Under these conditions the sound propagates through a time-varying, random 
or stochastic medium. Propagation in stochastic medium can be characterized by 
stochastic Green’s functions [1] or alternatively by random spreading functions [2]. 
Integral transform pairs relate spreading functions and stochastic Green’s functions. 
Spreading functions are more convenient for analysis of signal processing systems and 
for derivation of ROCs for both active and passive sonar in stochastic media. 
Spreading functions are random functions that indicate how a stochastic medium 
spreads a propagating signal in time and frequency. Hence, spreading functions are 
time-frequency domain characterizations of narrow band signal propagation and 
scattering.  Wideband spreading functions are wavelet transform domain 
characterizations of propagation and scattering of wideband signals in stochastic 
media [3].  Scattering functions, which have been widely used for analysis and 
synthesis of sonar, radar and communication systems, can be calculated from the 
spreading functions [1]. The receiver input consists of noise  and signal 
component or echo : 
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where ( , )b τ ω is the spreading function and  U ( , )τ ω  is a unitary transformation that 
transforms the signal  as shown below: ( )s t
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Here τ  is the differential propagation delay and ω  is frequency shift, or Doppler 

shift in the case of active sonar. According to the ray acoustics [4], discrete multipath 
propagation can be modeled as a sum of individual time-frequency spread signals: 
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In Equation 3 b ( , )i i iτ ω is the spreading function for the i th− ray. Thus the time –
frequency spread signal is a sum of signals that are spread within ray tubes. Under 
wide-sense stationary, uncorrelated scattering (WSSUS) assumption and under the 
additional assumption that s(t) is a wide-sense stationary stochastic process, the 
correlation function of the received signal is 
                              ∑ ∫∫
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where ),( iiS ωτ  is the scattering function the is computed by the WSSUS assumption 
from the spreading functions by Equation 5, below 
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The power spectral density of the received signal is the Fourier transform of the 
correlation function as expressed by Equation 3: 
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Equation 4 shows loss of signal coherency and Equation 6 shows spectral spreading 
due to multipath effects and motion through inhomogeneous medium with random or 
rough boundary conditions. Spectral spreading is also an indication of increase of 
signal uncertainty or entropy  
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In this section we have presented a brief review of characterization of stochastic media 
by spreading and scattering functions. Spectral spreading, loss of signal coherency and 
increase of signal uncertainty are all factors that cause decrease of probability of 
detection. To estimate how probability if detection is affected by medium uncertainty 
we need for expressions probability density functions.  Next we will review the MEM 
for computing probability density functions that can be used for computation of 
receiver operating characteristics. 
 
 

MAXIMUM ENTROPY METHOD FOR PERFORMANCE ANALYSIS OF 
SIGNAL PROCESSING SYSTEMS IN RANOM MEDIA 

 
      Maximum entropy formalism for continuous random variables maximizes the 
entropy [5-7] 
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subject to the normalization constraint 
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and moment constraints 
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For constrained maximization, we form the Lagrangian: 
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This Lagrangian is in the form of a calculus of variation problem  
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where is a known function. In this case, the integrand is not a function of F

( )f x′  and the Euler-Lagrange equation of the calculus of variations is 
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which gives 
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The Lagrange multipliers in the Equation 14 can be determined from the constraint 
equations  
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These equations can be used to derive maximum entropy distributions [7]. The 
maximum entropy distributions that we use in this paper are shown in Table 1 [7]. 
Specifically, we use a gamma distribution to model random signal to noise ratio, and a 
beta distribution to model conditional (conditioned on random/uncertain signal to 
noise ratio) probability of detection.  Other well-known maximum entropy 
distributions include multivariate Gaussian, exponential, truncated exponential, beta of 
second kind, Laplace and Cauchy distributions. All the relevant information that is 
required for derivation of these distributions is contained in the moments and 



constraints. Thus, the maximum entropy approach greatly simplifies analysis of signal 
processing systems in random media. Constraints and moments can be determined 
from the physics of the media. 
   

TABLE 1.  Maximum Entropy Distributions [7] 
Range Constraints Distribution 
( ,−∞ ∞) 2 2 2{ } and { }E x E x mσ= +

 
Gaussian: 2( , )N m σ  

[0,1] { ( )} and { (1 )}E n x E n x−A A
 

Beta distribution of the first 
kind. 

[0, )∞  Arithmetic and geometric 
means. 

Gamma distribution. 

  
 

MATCHED FILTER DETECTION IN RANDOM MEDIA: A 
SIMPLE EXAMPLE OF MAXIMUM ENTROPY METHOD 

 
   The effects of uncertain target and propagation models, as well as uncertain 
background noise, manifest in an uncertain signal to noise ratio and time-frequency 
spreading of the received echo, modeled by Equation 1.  Because it is reasonable to 
assume that, due to multiple scattering random boundaries and propagation through 
inhomogeneous media, the received signal or echo is a zero mean random process 
with constrained mean energy. Hence, according to the maximum entropy principle, it 
is a circularly symmetric (real and imaginary parts have equal variances) complex 
Gaussian stochastic process. The two hypotheses in this case are 
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where is expected received energy and n t  is Gaussian noise, again using 
maximum entropy assumption.  The detection statistic is 

rE ( )
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The detection statistic  is a ( )rA 2
2χ  distributed random variable with two degrees of 

freedom.  This follows from the fact that matched filtering operation is a linear 
operation on a circularly symmetric, complex Gaussian process, ; and hence, the  
magnitude squared of the matched filter output is a sum of squares of the real and 
imaginary parts [2]. The pdfs of the detection statistics under two hypotheses are 
simple exponential densities: 
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where 2 2
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nσ σ σ= +  Conditional probability of detection for a given threshold γ  for a 

signal and noise with variance 2
1σ is  
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Similarly the probability of false alarm at threshold γ and noise variance 2
nσ  is  
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If we fix FAf and solve for the threshold, γ , we have an expression for the conditional 
detection PDF in terms of the signal to noise ratio θ : 
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Due to randomness and uncertainty of propagation conditions, target strength and 
model, we take θ  to be a random variable.   It can be shown that a maximum entropy 
distribution that satisfies these physical constraints is gamma distribution. The 
marginal probability of detection is:  
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Equation 22 is used to plot the “mean” of the ROC, however ( / )Df x θ  is a function of 
random/uncertain signal to noise ratio θ .  Since ( / )Df x θ  is constrained to be in range 
of [ ]0,1 , its possible maximum entropy distribution is beta distribution of first kind 
with moment constraints :  
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The parameters for the beta distribution are calculated from constraints specified by 
Equations 23 and 24: 
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The beta density is:  
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The receiver operating characteristic’s mean value and confidence intervals are shown 
on Figure 1. Parameters for the Gamma density can be computed from mean signal to 
noise ratio and from the mean of the logarithm of the signal to noise ratio, which in 
turn can be computed from the sonar equation.  Details of this computation will be 
presented in a longer journal paper.    
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FIGURE 1.  Confidence intervals and mean of the receiver operating characteristic of a matched filter 
detector when signal to noise ratio is a random variable that is Gamma distributed. Gamma=2 
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CONCLUDING REMARKS 
 

High frequency source and receiver motion through inhomogeneous medium with 
random boundary conditions causes time and frequency spreading of the received 
signal.  This time-frequency spreading can be modeled by spreading functions. In 
principle, loss of signal coherency, spectral spreading and increase of signal 
uncertainty can be computed by using the spreading function model.  Actual 
computation requires sophisticated propagation modeling in a media with uncertain 
and frequently unspecified parameters. In this paper, we presented an example of 
application of maximum entropy method (MEM) to the performance analysis of a 
simple matched filter detector. This analysis can also applied to passive sonar 
detectors. MEM is a constrained optimization problem that maximizes entropy using 
known moments and range of the random variable as constraints. MEM is maximally 
uncertain in what is not warranted by data or known models [5-7].  In this 
performance analysis, uncertainty of propagation and background noise was accounted 
by treating the received signal to noise ratio as a random variable whose PDF is 
calculated according to the maximum entropy principle. According to the maximum 
entropy principle, the signal to noise ratio is a Gamma distribution and the conditional 
probability of detection is a beta distribution of second kind. Parameters of the 
Gamma distribution can be determined from the mean and logarithmic mean of the 
signal to noise ratio.  The simple example of application of MEM that has been 
presented in this paper can be extended to more complicated problems.     
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