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Abstract. Results of PE simulations at 3 kHz will be described for propagation in a shallow water 
waveguide with a rough sea surface and a flat water-sediment interface overlying absorbing 
sediments. Pressure fields are simulated in two space dimensions and have been obtained using a 
wide-angle PE code that accounts for scattering from a rough sea surface. The PE simulation 
approach is a Monte Carlo method, requiring solutions for many surface realizations in order to 
obtain results for field moments. To obtain a fast, yet accurate model for average field quantities, a 
transport theory method based on coupled modes has been developed for both the first and second 
moments of the field. Estimates for the fourth moment of the field have also been obtained based 
on the transport theory results for the first and second moments. Transport theory results for the 
coherent and total intensity, and for the scintillation index, will be presented and compared with 
Monte Carlo simulations. 
 
 

INTRODUCTION 
 

Modeling of shallow water propagation can be challenging because of the need to treat 
3-D spatial and temporal variations of the sound speed field, spatial bathymetric 
variations, and multiple boundary interactions for the propagating field. In practice, the 
problem is typically made even more difficult by an incomplete knowledge of the 
environmental conditions. Here we focus on the effects of rough surface scattering at sea 
surface boundary interactions, and for simplicity, take the sound speed to be constant 
within the water (1,500 m/s) and within the seafloor sediment (1,600 m/s), and assume 
the water column has a constant average depth (50 m) to a flat water-sediment interface. 
In addition, the field in the homogeneous sediment is attenuated at 0.5 dB/λ, and the 
sediment-to-water density ratio is 2.0.   

For the problem described, and for typical surface roughness conditions, the modeling 
task is simpler at low frequencies (< 1 kHz), because the propagating field is dominated 
by the coherent field, and the surface scattered incoherent component is relatively small 
by comparison. (The coherent field, or the first moment of the field, is given by the 
average of the complex field over an ensemble of rough surface realizations.) In this case, 
one could proceed iteratively by first obtaining in a self-consistent manner the coherent 
field as a function of range and depth, and then using the coherent field to obtain the 
scattered field [1-3]. As the acoustic frequency increases, however, the scattered 
incoherent field becomes larger relative to the coherent field, and it becomes more 



 

 

important to treat the effects of multiple scattering in forward propagation. We consider a 
frequency of 3 kHz where simulations to be described shortly show that the incoherent 
and coherent fields are of comparable magnitude for ranges up to about 5 km, while at 
longer ranges the coherent field dominates. To obtain “ground truth” for the effects of 
surface scattering on shallow water propagation at 3 kHz, we have used numerical 
simulations based on rough surface PE. In addition, we have developed a fast, yet 
accurate method based on transport theory for modeling both the coherent field and the 
average total intensity of the field that applies for all relative levels of the incoherent 
field. Results for the scintillation index have also been obtained. 

 
RESULTS 

 
The propagation simulations were done using a wide-angle PE method developed by 

Rosenberg [4] that we believe accurately accounts for forward scattering from a rough 
sea surface (in two space dimensions). The Rosenberg propagation model is an extension 
to a wide-angle PE propagation model developed by Collins [5]. Rough sea surface 
realizations generated for use in the simulations are consistent with a one-dimensional cut 
through a two-dimensional isotropic spectrum of a Pierson-Moskowitz form [6]. For 
examples shown, the surface waves are produced by a wind speed of 7.7 m/s (15 knots). 
A point source is located at the mid depth of 25 m, and a vertical beam pattern has been 
applied with a full width of 20° and with the beam center aimed up at a 10° grazing 
angle. The simulations have been done for a CW source. 

PE simulation results for the coherent intensity (first moment of the field) and the 
average total intensity (second moment of the field) based on 50 surface realizations are 
shown in Fig. 1. The simulation is done in two space dimensions, and cylindrical 
divergence is not included. The color bar denotes the field intensity in dB. At short range 
the total intensity is noticeably greater than the coherent intensity due to the presence of 
the incoherent field scattered from the rough sea surface. At longer range the total 
intensity approaches the coherent intensity, except in regions where the coherent intensity 
has nulls. These trends can be understood qualitatively from both ray and normal mode 
perspectives [7]. Monte Carlo simulations of this type give reliable results but are 
computer intensive and time consuming. It would, therefore, be advantageous to have a 
more practical method that yields these average results without depending on a Monte 
Carlo approach. 

We have developed a transport theory method for computing directly the first, second, 
and fourth moments of the propagating field. Space does not permit a detailed exposition 
of the method here, and these details will be presented elsewhere. Instead, we briefly 
indicate the basic ideas, and then show how well the transport theory results agree with 
those obtained with rough surface PE. The starting point is to expand the field in 
unperturbed normal modes and then obtain the evolution equations for the mode 
amplitudes, accounting for mode coupling due to scattering from a particular realization 
of the rough surface. Small surface height perturbation theory is used to evaluate the 
mode coupling terms. Stopping at this stage would yield an alternative Monte Carlo 
simulation method. Transport theory gives evolution equations for moments of the mode 
amplitudes at the cost of some approximations. The evolution equations for the first 



 

 

moment of the mode amplitudes are obtained by formally averaging the set of mode 
amplitude equations and using transport theory approximations as given, for example, by 
Van Kampen [8]. The final result is a first-order evolution equation of form 
 

                                                   
  

dA
dx

= RA                                                              (1) 

 
for the N-component vector A of average mode amplitudes with R an   N × N  matrix.  The 
solution to (1) is given by 
 
                                                         A(x) = exp (Rx) A(0) .                                                  (2)        
 

For the second moment, one first obtains the evolution equation for all products of two 
mode amplitudes with one amplitude complex conjugated. Formally averaging and 
making transport theory approximations again leads to equations of the form of (1) and 
(2), but now A is an     N 2 -component vector and R is an     N 2 × N 2 matrix. 
 

 
FIGURE 1. PE simu lation for coherent intensity (a) and total intensity (b) obtained by averaging over the 
results for 50 rough surface realizations. 
 



 

 

For our problem there would be 74 discrete modes (or “propagating modes”) plus 
continuum modes if the sediment were modeled as a lossless, infinite half-space. In 
practice, we have taken the computational region to consist of a 50 m water layer and a 
150 m sediment layer; this converts the continuum modes into a set of closely spaced 
discrete modes. (Because sediment attenuation is also included, some of the continuum 
modes are promoted to discrete modes; this will be described elsewhere.) We have 
investigated in detail the number of modes that must be retained in transport theory to 
obtain convergence with PE results. This was done by comparing transport theory and PE 
results for mode amplitude decay with range, using both the average mode amplitudes 
(the first moments) and the average of the absolute squares of the mode amplitudes (a 
subset of the second moments).  The PE mode amplitudes were obtained by projecting 
the PE fields onto the mode functions as a function of range for each rough surface 
realization and then performing averages over realizations of the complex mode 
amplitudes and their absolute squares. We found that true convergence between transport 
theory and PE results could be obtained by taking N = 74, the total number of 
propagating modes, each of which corresponds to rays that reflect from the bottom at 
grazing angles below the critical angle (about 20°). However, to obtain this convergence, 
we also found it necessary to extend sums over modes that occur in the matrix elements 
of R up to 200. This means that coupling terms are included that couple energy from 
below to above the critical angle, where it would be rapidly lost into the bottom; this 
energy loss needs to be included. Since we do not transport modes that correspond to rays 
that are above the critical angle, this energy is effectively removed from the problem at 
the point the coupling occurs. However, this has almost the same effect as transporting 
these higher modes, since they would be rapidly attenuated by absorption in the bottom. 
Thus, restricting the transported modes to the propagating modes turns out to be a good 
approximation when internal matrix element sums are extended to sufficiently high 
values (200 in our case). 

Obtaining the solution for the second moment with Eq. (2) would be entirely 
impractical for an N as large as 74. Fortunately, a major simplification can be made with 
essentially no loss in accuracy: we assume the effect of cross-mode coherences on the 
mode intensities can be neglected in Eq. (1). Our rationale is that these effects should 
largely average out over relatively short ranges due to range dependence of the phases on 
the right-hand side. We refer to this as the Dozier-Tappert approximation, since the same 
approximation was made in their transport theory treatment of acoustic propagation 
through internal waves [9, 10]. However, we do not neglect cross-mode coherence in 
constructing the intensity field; rather, we assume only that the incoherent contributions 
to the cross-mode coherence vanish. In the Dozier-Tappert approximation for the second 
moment, A becomes an N-component vector and R becomes an   N × N matrix. We have 
implemented transport theory with and without the Dozier-Tappert approximation, and 
found that for our problem the Dozier-Tappert approximation is perfectly adequate and 
yields excellent agreement with rough surface PE results. We make a related 
approximation for the first moment, which reduces R to diagonal form, and which we 
have also found to be highly accurate by comparing results with and without the 
approximation. Though R becomes diagonal, coherent mode amplitude decay due to 
rough surface scattering is still accurately taken into account through internal sums over 



 

 

modes in the diagonal elements that we extend up to 200. In what follows, the Dozier-
Tappert approximation will be taken to imply the approximations described for both the 
first and second moments of the field; this approximation has been used for all transport 
results shown.  

Transport theory results for the coherent intensity and the total intensity are shown in 
Fig. 2. A comparison of the intensities from PE (Fig. 1) with the corresponding transport 
theory predictions shows remarkable agreement. The coherent intensities in part (a) of 
these two figures are difficult to distinguish. (The difference above the mean surface 
occurs simply because the domain for the PE simulations extends well above the mean 
surface though the coherent field vanishes there, while the domain for the transport 
method terminates at the mean surface and the plot has not been modified to show a 
vanishing field above the mean surface.) The average total intensities (coherent plus 
incoherent) in part (b) of the figures are also in very good agreement in the water column. 

 

 
FIGURE 2. Transport theory results for coherent intensity (a) and total intensity (b) obtained in the Dozier-
Tappert approximation.  

  
Note that the PE simulation shows scattered intensity in the sediment at short range 

that is not present in the transport theory plot. This difference follows from our restriction 
to propagating modes with transport theory and has two elements. First, we begin by 
projecting the starting field onto the set of 74 propagating modes. However, the starting 
field employed has some initial energy propagating at angles relative to the horizontal 



 

 

that are greater than the critical angle. This energy is rapidly lost into the bottom in the 
PE simulation, but is not included in the transport model; differences downrange due to 
this should be negligible. Second, rough surface scattering continually promotes energy 
from discrete propagating modes to modes that are rapidly attenuated in the bottom (the 
set of closely spaced discrete modes that represent the continuum modes plus the 
“promoted” discrete modes). Or, equivalently, scattering continually transfers energy 
from below to above the critical angle, and this energy shows up in the PE simulation as 
it is being lost into the bottom. As discussed previously, in our transport method this 
energy effectively vanishes in the water column at the point it scatters to angles above the 
critical angle, and therefore does not appear as intensity in the sediment. Since this 
energy loss is being properly taken into account, differences downrange should again be 
negligible. If the field in the sediment were of primary interest, the number of modes 
retained in the transport method could be increased.  

In addition to being accurate, the transport method is very fast in the Dozier-Tappert 
approximation. The PE results in Fig. 1 took on the order of a day of computer time to 
obtain, while the time required for the transport method was on the order of a minute. 
Therefore, the transport theory approach appears to be an attractive alternative to brute 
force Monte Carlo methods.  

Figure 3 shows the comparison at short range between PE and transport theory for the 
total intensity. The high quality of the agreement in the water column is again evident, as 
are the differences in the sediment as discussed in reference to Fig. 2. Other approaches, 
such as ray tracing where the effect of boundary roughness is incorporated as a loss into a 
boundary reflection coefficient, may be capable of accurately modeling the coherent 
intensity [11]. However, we believe the ability to accurately and rapidly model the 
coherent plus incoherent intensity in the mid frequency region is new. 

In addition to the average intensity, the fluctuations in the average intensity are of 
interest as the realization of surface roughness changes with time. One characterization of 
these fluctuations is given by the scintillation index, a fourth moment of the field. In 
principle, transport theory can be extended to obtain evolution equations for the fourth 
moments of the mode amplitudes. We have taken a simpler and more approximate 
approach. The total pressure is the sum of the coherent and incoherent pressure. If one 
assumes that the incoherent complex pressure obeys Gaussian statistics, it is 
straightforward to derive an expression for the scintillation index in terms of the coherent 
and total intensities. The result is 

 

                                    
    
SI =

< I >2 −I c
2

< I >2
=

<| p |2>2 − |< p >|4

<| p |2>2
,                                     (3)   

 
where   < p >  and     <| p |2 >  can be given by transport theory. Thus, we obtain a transport 
result for the scintillation index that can be compared with the PE result for the same 
quantity where no approximations (other than rough surface PE) are made. The 
comparison is shown in Fig. 4. To obtain good convergence to the fourth moments with 
PE simulations, the number of rough surface realizations was increased to 1,000 for this 



 

 

example. The agreement in the water column between transport theory and PE results for 
the scintillation index is very good, in spite of the approximations made. 

 
FIGURE 3. Comparison of  (a) PE simulation for total intensity obtained by averaging over the results for 
50 rough surface realizations with (b) transport theory result. 
 

DISCUSSION 
 

The results presented indicate that transport theory in the Dozier-Tappert 
approximation is a promising approach for modeling shallow water propagation at mid 
frequencies where boundary scattering can play an important role. The method as 
outlined is accurate and computationally fast for the problem studied. In addition to 
providing the coherent field and the total intensity, the scintillation index can be obtained 
with good accuracy at essentially no extra effort for the case treated. 
 

The problem considered includes several significant simplifications. The geometry is 
two-dimensional, roughness is confined to the surface, sound speed variations (e.g., 
internal waves) and bathymetric variations are ignored. We believe that some, and 
perhaps all, of these restrictions can be relaxed in future work. 
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FIGURE 4. Comparison of  (a) PE simulation for the scintillation index obtained by averaging over the 
results for 1000 rough surface realizations with (b) transport theory result. 
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