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Abstract. A steady-state 3-D finite-element tool called FESTA (Finite-Element STructural Acous-
tics), is being developed at the NATO Undersea Research Centre. The code is geared towards a
variety of applications in underwater acoustics, such as multistatic scattering from localized in-
homogeneities, scattering across interfaces between fluids and/or solids, and multistatic scattering
from single and multiple fluid-loaded elastic targets. The hp-adaptive finite-element technology used
to develop FESTA allows the user to optimize the convergence as well as the demand on computing
resources by selectively changing the element size (h-refinement) and/or by increasing the order
of the polynomial finite-element shape functions (p-enrichment). An efficient hybrid tool for the
computation of multistatic scattering from targets buried, partially buried or proud inside shallow
water waveguides is being developed in conjunction with MIT. In this hybrid tool FESTA is used
to perform target computations in the near field of the scatterer, while the waveguide propagation
model OASES computes the far field propagation of the incident and scattered acoustic fields. The
presentation focuses on the most relevant details of the formulations implemented in FESTA, as
well as on application examples for frequencies ranging from 1 kHz to a few tens of kHz.

INTRODUCTION

The steady-state Finite Element STructural Acoustics code called FESTA, which is
under development at the NATO Undersea Research Centre, is based on a fully 3-D
continuum mechanics description of the acoustics in both fluid and elastic media. The
basic building block for the tool is a state-of-the-art commercial finite element kernel
and library called ProPHLEX, which is developed at COMCO/Altair Engineering (see
[1]). FESTA is capable of computing efficiently the multistatic scattered field in the
vicinity of localized inhomogeneities and/or of elastic objects with internal structure,
such as mines. Because of the computational cost associated with 3-D finite element
computations, one is usually limited to finite element domains which are not larger than
at most a few tens of wavelengths. Common problems of scattering from objects in
underwater waveguides, on the other hand, require the computation of the acoustic field
in much larger domains. To overcome this limitation, FESTA has been interfaced with
the MIT wavenumber integration propagation tool OASES [2, 3]. The resulting hybrid
FESTA/OASES tool is capable of treating 3-D elastic objects of arbitrary shape inside
ocean waveguides. This paper focuses on the technique developed to couple FESTA



with OASES by giving a brief description of the relevant mathematical formulations.
Several applications of FESTA and of the hybrid tool are discussed in the oral conference
presentation.

THEORY

This section describes briefly the steady-state structural acoustics equations used in
FESTA, and the boundary conditions implemented in the current version of the tool. A
special boundary condition which is used to couple FESTA with underwater propagation
tools is also presented. For a more detailed discussion of the derivations and theory
underlying FESTA, the reader is referred to [4, 5].

Assuming exp (+iωt) time-dependence, where ω is the angular frequency and t
represents time, the linear wave equations for an anisotropic elastic solid in a cartesian
coordinate system can be written as:(

cα lβ muβ ,m
)
, l

+ω2ρsuα = 0 , (1)

with α,β = 1, . . .,6, and with the latin indices l,m = 1,2,3 representing the cartesian
coordinates x,y and z. The displacement vector in the solid is:
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where (ux,uy,uz) is the complex displacement vector in cartesian coordinates, and the
superscripts R and I denote the real and imaginary parts, respectively. According to
the definitions of tensor calculus, repeated indices in a term imply summation, and a
comma preceding a subscript index denotes differentiation with respect to the coordinate
associated with the index. The material properties in equation (1) are given by the tensor
of elastic moduli cα lβ m and by the density ρs. In its most general form, cα lβ m can
describe fully anisotropic elastic materials.

The complex pressure p = (pR, pI) in the fluid is described by the Helmholtz equation(
1

ω2ρ f pα ,m

)
,m

+Kαβ pβ = 0 . (3)

The material properties of the fluid are the density ρ f and the compressibility matrix

[K] =
1

BR(1+δ 2)

[
1 −δ
δ 1

]
, (4)

where BR is the dynamic bulk modulus, and δ is the damping factor. Although the
writing of complex equations as systems of purely real equations may seem somewhat
awkward to the reader, the reason motivating this choice in the present paper is that the
ProPHLEX FE development library and kernel used by the authors requires all quantities
to be purely real (see [1]).
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FIGURE 1. A generic finite element Ω(e), and a view into a 3-D finite element mesh of two hollow
steel cylinders (black elements) surrounded by a ball of fluid elements. The ball of fluid is bounded by
the spherical surface ΓS, on which radiation conditions are applied to ensure the outward radiation of the
scattered field.

Finite element equations

Instead of deriving separate finite element equations for a solid element and for a fluid
element, one can construct a single type of finite element which represents either a solid
or a fluid, depending on the choice adopted for the constants in the equations. Figure
1 shows an example of a single element and of a full finite element mesh consisting
of approximately 2000 elements, some of which are solid elements (two cylinders in
the center of the mesh), while the others are fluid elements. The first step in writing a
single FE equation for the two media is to group equations (1) and (3) into one single
expression: (

aα lβ m qβ ,m
)
, l

+ cαβqβ = 0 , (5)

with α,β = 1, . . .,8. The unknown vector quantity {q} is defined by
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where the superscript T denotes the transpose. The wave equation for a solid is obtained
from equation (5) by choosing

aα lβ m =
{

cα lβ m α,β = 1, . . .,6
0 otherwise

(7)

cα β =
{

ω2ρs δαβ α,β = 1, . . .,6
0 otherwise .

(8)

The symbol δαβ represents the Kronecker Delta, which is equal to unity if and only if
α = β , while it is zero for α �= β . The equations for a fluid are obtained easily from (5)
by setting

aα lβ m =

{
δαβ δlm

ω2ρ f α,β = 7,8
0 otherwise

(9)

cα β =
{

Kαβ α,β = 7,8
0 otherwise .

(10)



The starting point for the derivation of the Bubnov-Galerkin integral equations for a
generic fluid/solid element is the expansion of each of the 8 field variables qβ in a series
of ν basis functions,

qβ = Φβ j Q j , β = 1, . . . ,8; j = 1, . . .,8ν . (11)

The basis functions, which in the present case are the hierarchic polynomials defined in
[1], are grouped into the matrix

[Φ] = [φ1[I], . . .,φν [I]] , (12)

where [I] is an 8x8 identity matrix. The vector Q j contains the unknowns, which are the
coefficients of each individual basis function.

Equation (5) is premultiplied by [Φ]T and integrated over the element volume Ω(e).
Application of the divergence theorem and the substitution of Eq. (11) into the aα lβ m
and cαβ integrals yields the finite element linear matrix equation[∫

Ω(e)
Φiα ,laα lβ mΦβ j ,m dΩ−

∫
Ω(e)

Φiαcαβ Φβ j dΩ
]

Qj =∫
∂Ω(e)

Φiαaα lβ mqβ ,mnl dΓ︸ ︷︷ ︸
I∂ Ω(e)

, i = 1, . . . ,8ν , (13)

where ∂ Ω(e) represents the boundary of the element (e). The vector nl is the unit normal
on ∂ Ω(e) pointing outward. The boundary conditions on the faces of an element are
applied via the integral I∂Ω(e) .

Once the computational domain has been divided into a mesh of elements, the linear
equations (13) corresponding to each element are assembled into a global sparse linear
system of equations. Assembly enforces the inter-element continuity of normal parti-
cle displacement within the solid domain and the inter-element continuity of acoustic
pressure inside the fluid domain.

For any pair of adjacent fluid elements, the assembly process also produces a differ-
ence of two I∂Ω(e) integrals on the interface shared by each of the two elements. Since
aα lβ mqβ ,mnl represents the normal particle displacement, which is required to be con-
tinuous across the interface between two adjacent elements, the difference of two I∂Ω(e)

integrals is set to zero. Similarly, the difference of two I∂Ω(e) integrals on the interface
between two adjacent solid elements is set to zero because aα lβ mqβ ,mnl represents the
normal component of the stress tensor, which also has to be continuous. The continuity
of normal stress and displacement cannot be imposed naturally by the assembly process
across the interface between a fluid and a solid element. To join the solid and the fluid
domains, the continuity of normal stress and particle displacement on the common in-
terfaces between adjacent solid and fluid elements is guaranteed by solid/fluid coupling
surface integrals, which convert the solid degrees of freedom to compatible fluid degrees
of freedom and vice-versa. Other boundary conditions which can be applied to the finite
element equation are the Dirichlet, Neumann, and Mixed conditions on the free faces
of an element. To apply the Sommerfeld radiation condition for unbounded domains in



an approximate form, the Bayliss-Turkel first order radiation conditions (see [6]) are
used on the free faces of a spherical surface enclosing the finite element computational
domain. The reader is referred to [4, 5] for a more detailed discussion of the boundary
conditions implemented in FESTA.

Hybrid finite element/propagation tool modeling

In many practical applications it is necessary to compute the acoustic field inside a
shallow water waveguide containing one or more targets. For such problems, the size
of the overall computational domain is usually around a few hundreds of wavelengths
in range and depth, while the size of the target is on the order of one to a few tens of
wavelengths. Experience shows that the complete solution of such problems by the finite
element technique alone is not feasible because of the computational cost associated
with 3-D FE codes. On the other hand, many underwater propagation tools, such as
OASES/SAFARI [2, 3], compute the propagation inside ocean waveguides efficiently,
but lack the capability of treating arbitrarily shaped 3-D elastic targets. These different
characteristics of the FE technique and the propagation tools suggest that the 3-D
scattering problems in underwater ducts can be solved by a technique in which the
finite element tool and a propagation code are interfaced to form a hybrid tool. The
hybrid technique presented here is based on the decomposition of the problem into a
long-range propagation sub-problem, which can be solved by the propagation tool, and
a nearfield scattering sub-problem to be solved by the finite element tool. The boundary
data required for the definition of the local finite element scattering problem is assigned
via the boundary condition presented below.

The communication between the finite element model and the wavenumber integra-
tion tool occurs through the three step procedure outlined in Fig. 2. In the first step, the
propagation tool computes the acoustic field inside the shallow water waveguide in ab-
sence of the target. In the second step, the incident field computed in step one and its
normal derivative are assigned on ΓS (see figure 1) as incident field data for the local
scattering computation. An approximate form of the Sommerfeld radiation condition to
ensure the outward radiation of the scattered field is also needed on ΓS. At this point,
the finite element scattering problem is solved by FESTA, and the total field resulting
from the computation is sampled on the boundary of the sphere. Subtraction of the in-
cident field from the FESTA result yields the scattered field on ΓS. In the third and last
step, the scattered field and its normal derivative are passed back to the propagation tool,
which constructs a multipole having the same radiation pattern as the scattered field. The
multipole is then used as a source for the propagation of the scattered field through the
underwater channel.

The boundary conditions for coupling FESTA to the propagation tool in step two
are obtained from the boundary integral I∂Ω(e) in Eq. (13). To achieve this, the boundary
integral for a fluid is expressed explicitly in terms of the gradient of the acoustic pressure
as

I∂Ω(e) =
∫

ΓS

1
ω2ρ f Φiβ pβ , lnldΓ , (14)
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FIGURE 2. Example of a coupled FESTA/OASES computation. Step 1: incident field computation with
OASES. Step 2: scattered field computation with FESTA, using the incident field from step 1 as a BC on
the spherical surface ΓS. Step 3: the scattered field is propagated in the waveguide by OASES.

with β = 1,2. Denoting the incident field by pinc
β and the scattered field by pscat

β , the total
pressure pβ can be written as

pβ = pinc
β + pscat

β . (15)

The approximate radiation condition for the scattered field used here is the one
developed by Bayliss, Turkel and co-workers ([6]):

1
ρ f pscat

β , l nl = Rβ α pscat
α , α = 1,2 , (16)

where the matrix Rβ α represents the first order linear Bayliss-Turkel radiation operator.
Substitution of equation (15) into equation (14) and application of the radiation condition
(16) yield after some simple manipulation:

I∂Ω(e) =
∫

ΓS

Φiβ

ω2 Rβ α pα dΓ+
∫

ΓS

Φiβ

ω2

[
1

ρ f pinc
β , lnl −Rβ α pinc

α

]
dΓ . (17)

The first integral in equation (17) contains the unknown pα and thus it is moved to the
left-hand side of the FE linear equations. The other integral remains on the right-hand
side of the FE system because it contains the incident field pinc

α and its gradient, which
are both computed by the propagation tool in the first step of the coupling procedure.



NUMERICAL RESULTS

To illustrate a possible use of the hybrid FESTA/OASES tool, an acoustic barrier for the
detection of objects in shallow water is studied (Fig. 2). In the envisioned application, a
focused field is generated in an area across which one wants to detect intruding foreign
objects. The detection is based on the measurement of perturbations in the quiescent
region below the focus, which are caused by the forward scattering from an object
crossing the barrier.

The environment considered here is a Pekeris waveguide consisting of a 25m deep
water layer with an infinite layer of sand below it. A vertical time-reversal mirror array,
located at range 0m, focuses the emitted sound at range 200m, and at 2.5m depth. At
the frequency of 10 kHz used in the computations, the area shown in Fig. 2 spans over
1300 wavelengths in range, and approximately 170 wavelengths in depth. The scatterers
penetrating the focused acoustic field are two closely spaced void steel cylindrical shells
with hemispherical endcaps, modeled with the mesh depicted in Fig. 1. Each cylinder
has a diameter of approximately 18 cm (roughly 1 wavelength) and a length of 60
cm (4 wavelengths). A contour plot of the transmission loss against range and depth
computed by OASES in the first step of the hybrid procedure, showing the unperturbed
focused acoustic field inside the waveguide, is displayed in the top panel of Fig. 2.
The acoustic field in the sediment is not plotted in the figure. In the second step of
the computation, the targets are located at range 170m and at depth 20m (large dot in
the figure), with the axes of the cylinders lying perpendicular to the range-depth plane
shown in the figure, and with the centers of the cylinders aligned parallel to the bottom.
The middle panel of the figure shows a representation of the FESTA computation, and
the bottom panel shows the scattered field in the waveguide computed by OASES. The
top arrow connecting OASES to FESTA and the bottom arrow connecting FESTA to
OASES represent respectively the sampling of the incident field and of the scattered
field on the surface ΓS. On a high-end Unix RISC workstation, the typical CPU times
for computations like the one shown here are on the order of one to a few hours for the
FESTA step, and a few minutes for each of the two OASES steps.

CONCLUSIONS

The hybrid finite element scattering/wavenumber integration propagation technique pre-
sented makes it possible to address the problem of scattering from 3-D objects in shal-
low water environments. In the example shown above, the multiple scattering between
the cylinders is treated properly by one single finite element computation because both
cylinders belong to the same finite element mesh, on which the full acoustic wave equa-
tion is solved. The multiple scattering between the targets, the sea surface and the bot-
tom, on the other hand, can be computed only by approximating the Born series of the
scattering via multiple iterations of the described three-step procedure. Although the
importance of multiple scattering effects is of lower order for situations like the one dis-
cussed above, the interactions between the targets and the sediment can dominate the
scattering from partially buried or flush buried objects. To take such effects properly



into account, an environment-independent coupling technique based on the characteri-
zation of the target via in-vacuo response matrices is being investigated by the authors
at the present time. The approach is based on the finite element analysis of the elastic
responses of the target to a series of independent localized forces applied to its surface
in the absence of a surrounding fluid. As a result of such computations, one obtains an
admittance matrix in which the displacements and the forces on the surface of the target
are related to each other. Using such a matrix as an input, OASES can rapidly compute
the field scattered by the target for a given scenario, including the case of a partially
or flush buried target. An alternate environment-independent coupling technique is ob-
tained by considering an independent set of spherical harmonic fields incident on the
target immersed in a fluid. For each different spherical harmonic case, a scattered field
is computed, and the result is stored in a database. The scattering for a given incident
field, like for example the focused field considered above, can be easily computed by
decomposing the incident field into spherical harmonics, and by successively superim-
posing each spherical harmonic scattered field stored in the database according to the
coefficients of the expansion. The common advantage associated with the environment-
independent coupling techniques, is the capability to synthesize efficiently the scattered
field for a given scenario by using a set of FE results which are calculated a priori, thus
eliminating the need to repeat the computationally expensive finite element analyses for
every single case considered.
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