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Abstract. High rate underwater communications have traditionally relied on equalization meth-
ods to overcome the intersymbol interference (ISI) caused by multipath propagation. An alternative
technique has emerged in the form of time-reversal, which comes at virtually no cost in computa-
tional complexity, but sacrifices the data rate and relies on large arrays to reduce ISI. In this paperer,
optimal multipath suppression using spatio-temporal processing is addressed analytically. A com-
munication link between a single element and an array is considered in several scenarios: uplink
and downlink transmission, with and without channel state information and varying implementa-
tion complexity. Transmit/receive techniques are designed which simultaneously maximize the data
detection SNR and minimize the residual ISI, while maintaining maximal data rate in a given band-
width and satisfying a constraint on transmitted energy. The performance of various techniques is
compared on a shallow water channel operating in the 15 kHz band. Results demonstrate benefits
of optimal focusing whose performance is not conditioned on the array size.

INTRODUCTION

High rate acoustic communications have traditionally relied on adaptive equalization
methods to overcome the intersymbol interference (ISI) caused by multipath propaga-
tion. Excellent performance of these receivers comes at a price of high computational
complexity [1]. In standard equalization, all of the signal processing is performed at
the receiver, while the transmitter uses standard signaling waveforms. A different, and
possibly better approach is to split the signal processing between the transmitter and
receiver. Such an approach forms the basis of spatio-temporal focusing.

In its simplest form, focusing is achieved by transmitting a time-reversed (or equiva-
lently, phase-conjugated in the frequency domain) replica of a probe signal received ear-
lier from the source location. This technique has been used for medical imaging, therapy,
and material testing, while recent research has hailed it as a method that can replace tra-
ditional equalization, and eliminate the associated computational burden (e.g., [2]-[5]).
Several research groups have been involved in application of time-reversal (TR) arrays
to undersea acoustic communications, addressing active phase-conjugation for two-way
communication [2], as well as passive phase-conjugation for one-way communication
from a point source to an array [3]. These groups have been engaged in experimen-
tal work, emphasizing low-complexity processing using TR only. In parallel, analytical
work addressed the use of adaptive channel estimation and low complexity equalization
in conjuction with TR [4]. The common goal of these efforts was to eliminate ISI by



use of TR. Ensuring ISI-free transmission in a system that has multiple transmit/receive
elements is a major asset in a channel whose bandwidth is severely limited. In particular,
it lays ground for the exploitation of bandwidth-efficiency improvement available from
multi-input multi-output (MIMO) signal processing [6].

A statement commonly encountered in the relevant literature is that TR “undoes” the
effects of multipath. However, as the experimental results have shown, suppression of
multipath effects by TR is achieved at the expense of reduced data throughput and/or the
need for a large array, a consequence of relying on TR to eliminate ISI. TR recombines
multipath energy in a manner of matched filtering, whose function is to maximize the
SNR, and not to eliminate ISI. In fact, matched filtering increases temporal dispersion
of the signal, and in a communication system where a sequence of pulses is transmitted
at high rate, it must be followed by a sequence estimator or an equalizer. Increasing
the number of elements in a TR array only helps to reduce residual ISI, but it does not
eliminate it. The use of equalization in conjunction with TR may become necessary,
but the advantage of this approach to standard equalization is not apparent. The use of
spatio-temporal focusing for complete suppression of multipath effects thus remains an
open question.

In this paper, a solution is proposed to the following problem: If the channel responses
between a single element and an array are known, determine the optimal transmit/receive
technique that the two can use to simultaneously (1) eliminate ISI and (2) maximize
SNR, while maintaining maximal data rate in a given bandwidth and satisfying a con-
straint on transmitted energy. Note that because it allows for transmitter as well as re-
ceiver optimization, the solution differs from standard equalization. Also, because it
explicitly requires minimization of ISI, it differs from TR. The resulting system does
not depend on the number of array elements to minimize the multipath distortion, but
instead provides an answer for a variety of applications that cannot afford large arrays.
Optimal configurations are intended as a basis for adaptive system implementation in
which channel estimates will replace the unknown, time-varying responses.

SYSTEM OPTIMIZATION

System optimization is addressed for uplink and downlink communication (to/from
array), as shown in Fig.1. Performance is assessed using SNR as the figure of merit,
and compared to that of TR, standard linear equalization, and TR in conjunction with
equalization.
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FIGURE 1. Uplink (left) and downlink (right) transmission. An equalizer may or may not be used.



Transmitter/receiver optimization for no ISI. The data sequence d(n) is trans-
mitted at symbol rate 1/T . The problem is to find transmit/receive filters G0( f ) and
G1( f ), . . .GM( f ) such that the SNR at the receiver is maximized, subject to the con-
straint that there is no ISI in the decision variables d̂(n) = y(nT ), and that finite trans-
mitted energy per bit E is used. The channel responses Cm( f ),m = 1...M and the power
spectral density Sw( f ) of the uncorrelated noise processes wm(t),m = 0...M are assumed
to be known.

The composite channel response is denoted by F( f ) = G0( f )∑M
m=1 Gm( f )Cm( f ). The

received signal after filtering is then given by y(t) = ∑n d(n) f (t −nT )+ z(t), where the
noise z(t) has power spectral density

Sz( f ) = Sw( f )
M

∑
m=1

|G2
m( f )| for uplink, and Sz( f ) = Sw( f )|G2

0( f )| for downlink. (1)

The requirement for no ISI is expressed as F( f ) = X( f ), where X( f ) is Nyquist, i.e.,
bandlimited to ±1/T and its waveform x(t) satisfies x(nT ) = x0δn,0. X( f ) can be chosen
as raised cosine, and without loss of generality we take that X( f ) = |X( f )|. When there
is no ISI, the sampled received signal is y(nT ) = d(n)x0 + z(nT ), and SNR = σ2

d x2
0/σ2

z ,
where σ2

d = E{|d2(n)|} and σ2
z =

∫ +∞
−∞ Sz( f )d f . The energy constraint is expressed as

E = σ2
d

∫ +∞

−∞
|G2

0( f )|d f for uplink, and E = σ2
d

M

∑
m=1

∫ +∞

−∞
|G2

m( f )|d f for downlink. (2)

Let us first consider uplink transmission. Taking into account the no ISI requirement
and the energy constraint, the SNR is expressed as

SNR = Ex2
0

[∫ +∞

−∞

X2( f )
|∑m Gm( f )Cm( f )|2 d f

∫ +∞

−∞
Sw( f )

M

∑
m=1

|G2
m( f )|d f

]−1

. (3)

This function is to be maximized with respect to the receive filters Gm( f ). To do so,
we use a two-step procedure, each involving one Schwarz inequality. The first inequality
states that

|
M

∑
m=1

Gm( f )Cm( f )|2 ≤ γ( f )
M

∑
m=1

|G2
m( f )|; γ( f ) =

M

∑
m=1

|C2
m( f )| (4)

where the equality holds for

Gm( f ) = α ( f )C∗
m( f ). (5)

We note similarly with TR in that receiving filters should be proportional to the
phase-conjugate of the channel transfer functions. However, there is room for additional
improvement through optimization of the function α ( f ). Applying a second Schwarz
inequality to the denominator of the SNR bound yields:

∫ +∞

−∞

X2( f )
γ( f )∑m |G2

m( f )|d f
∫ +∞

−∞
Sw( f )

M
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|G2
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[∫ +∞

−∞

X( f )√
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√
Sw( f )d f

]2

(6)



where the equality holds for

X( f )/
√

γ( f )Sw( f ) = β
M

∑
m=1

|G2
m( f )| (7)

and β is a constant. Combining the two conditions (5) and (7) we obtain the optimal
value of α ( f ), which determines the the transmit filter G0( f ) = X( f )/[α ( f )γ( f )], and
the constant β then follows from the energy constraint (2). The desired solution is

G0( f ) = K( f )
√

X( f )γ−1/4( f ); Gm( f ) = K−1( f )
√

X( f )γ−3/4( f )C∗
m( f ),m = 1...M

where K( f ) =
√

E/σ2
d

[∫ +∞

−∞
S1/2

w ( f )X( f )γ−1/2( f )d f

]−1/2

S1/4
w ( f ). (8)

This selection of filters achieves maximal SNR,

SNR2 = Ex2
0

[∫ +∞

−∞

√
Sw( f )

X( f )√
γ( f )

d f

]−2

(9)

where index ‘2’ indicates that both sides of the link adjust their filters in accordance with
the channel. Optimization in the downlink case gives filters in identical form, except that
the factor K( f ) is the reciprocal of that given in (8). The same maximal SNR is achieved.

We now turn to the situation in which one side of the link is constrained to have
minimal complexity, such as when limited processing power is available at the single-
element end. The no ISI condition still must hold, F( f ) = X( f ), but the filter G0( f )
may no longer be a function of the channel responses. A similar optimization procedure
results in the following solution:

uplink: G0( f ) = K
√

X( f ); Gm( f ) = K−1
√

X( f )γ−1( f )C∗
m( f ),m = 1...M

where K =
√

E/(σ2
d x0)(10)

downlink: G0( f ) = K−1( f )
√

X( f ); Gm( f ) = K( f )
√

X( f )γ−1( f )C∗
m( f ),m = 1...M

where K( f ) =
√

E/σ2
d

[∫ +∞

−∞
Sw( f )X( f )γ−1( f )d f

]−1/2

S1/2
w ( f ).(11)

This selection of filters achieves maximal SNR available with one-side adjustment,

SNR1 = Ex0

[∫ +∞

−∞
Sw( f )

X( f )
γ( f )

d f

]−1

. (12)

Comparing the SNR available with and without complexity constraint, we find that
SNR1 ≤ SNR2. The two SNRs are equal only when γ( f ) is proportional to Sw( f ). In
what follows, we shall focus on the usual case of white noise, Sw( f ) = N0. Note that
K( f ) then becomes a constant, and the same set of filters may be used for uplink and
downlink transmission.



TR performance with residual ISI. When no care is taken to ensure focus-
ing, samples of the received signal, y(nT ) = ∑k f (kT )d(n − k) + z(nT ), con-
tain residual ISI. Assuming uncorrelated data symbols, the SNR is given by
SNR0 = σ2

d | f 2(0)|/[σ2
d ∑k �=0 | f 2(kT )| + σ2

z ]. We consider the following situation.
On the uplink, the transmitter uses G0( f ) = Ku

√
X( f ), and the receiver uses

Gm( f ) = G∗
0( f )C∗

m( f ). This scenario is analogous to ideal (noiseless) passive phase-
conjugation. On the downlink, the transmitter uses Gm( f ) = Kd

√
X( f )C∗

m( f ). This sce-
nario is analogous to active phase-conjugation. The receiver filter is G0( f ) =

√
X( f ).

The constants Ku,Kd are determined from the energy constraint (2). The SNR in either
case is obtained as

SNR0 =
E/N0

ρE/N0 + x0∫ +∞
−∞ X( f )γ( f )d f

; ρ =
∑k �=0 | f 2(kT )|

| f 2(0)| =

∫ +1/2T
−1/2T |Xγ[ f ]|2d f T∫ +∞
−∞ X( f )γ( f )d f

−1 (13)

where Xγ[ f ] denotes the folded spectrum of X( f )γ( f ), Xγ[ f ] = 1
T ∑k X( f + k

T )γ( f + k
T ).

We note that as the noise vanishes, i.e. E/N0 →+∞, unlike with optimal focusing where
SNR1,2 → +∞, the performance of TR saturates, SNR0 → 1/ρ. The value of ρ depends
on the channel through the function γ( f ), and on the system bandwidth through X( f ).

TR performance with equalization. The performance of TR saturates because
of residual ISI. To overcome this limitation, an equalizer may be used. An opti-
mal (MMSE) linear processor used on the downlink consists of the matched filter,
G0( f ) = [∑M

m=1 Gm( f )Cm( f )]∗, and a symbol-spaced equalizer with transfer function
A[ f ] = σ2

d F∗[ f ]/(σ2
d |F [ f ]|2 + Sz[ f ]), where F[ f ] is the folded spectrum of the over-

all response F( f ) = |G2
0( f )|, and Sz[ f ] = N0F[ f ] is the power spectral density of the

discrete-time noise process z(nT ). The SNR at the equalizer output is

SNR =
[∫ +1/2T

−1/2T

d f T

1+(σ2
d /N0)F [ f ]

]−1

−1. (14)

For the transmit filter selection as in active phase-conjugation, Gm( f )= Kd
√

X( f )C∗
m( f ),

the SNR is

SNR3,tr =


∫ +1/2T

−1/2T

d f T

1+ E/N0∫ +∞
−∞ X( f )γ( f )d f

Xγ2[ f ]



−1

−1 (15)

where Xγ2[ f ] is the folded spectrum of X( f )γ2( f ).
Equalizer performance. A standard equalizer does not rely on TR at the transmitter,

but instead uses pre-determined, channel-independent filters Gm( f ) = Kd
√

X( f ). The
SNR is computed from (14) as

SNR3,down =


∫ +1/2T

−1/2T

d f T

1+ E/N0
Mx0

XΣ2[ f ]



−1

−1 (16)

where XΣ2[ f ] is the folded spectrum of X( f )|∑m Cm( f )|2.



In the uplink scenario, the MMSE linear processor consists of a bank of matched
filters, Gm( f ) = G∗

0( f )C∗
m( f ) as in passive phase-conjugation, followed by the equalizer

whose optimal transfer function now depends on F( f ) = |G2
0( f )|γ( f ). For the standard

transmit filter selection, G0( f ) = Ku
√

X( f ), the SNR (14) becomes

SNR3,up =


∫ +1/2T

−1/2T

d f T

1+ E/N0
x0

Xγ[ f ]



−1

−1. (17)

Comparing uplink and downlink equalization, we have that SNR3,up ≥ SNR3,down.
The two are equal if the M channel transfer functions Cm( f ) are identical and constant
within the signal bandwidth. It is not clear, however, how SNR3,down compares with
SNR3,tr , i.e. is there an advantage to using transmit TR in conjunction with equalization.
This question gives rise to a broader one of optimal transmit filtering for equalization.

Equalizer performance with optimized transmit filter. If the requirement for no
ISI is relaxed in the optimal system design, and an equalizer is used at the receiver, the
question is what transmit/receive filtering should be used to maximize the SNR. Note
that because this optimization criterion is less restrictive than that of optimal focusing
(the no ISI constraint has been removed) improved performance may be expected.

Maximization of SNR (14) with respect to the transmit filter(s) is accomplished using
the Lagrange method, yielding the following uplink/downlink solution when the system
operates in minimal bandwidth B = 1/T (see [7] for details):

SNR4 =

{
1−

∫
BL

d f T +[
∫

BL

d f T√
γ( f )

]2[
E
N0

+
∫

BL

d f T
γ( f )

]−1

}−1

−1 (18)

where BL = { f : γ( f ) ≥ γL}, and γL is the smallest value of γ( f ) for which

[
E
N0

+
∫

BL

d f T
γ( f )

][∫
BL

d f T√
γ( f )

]−1

≥ 1/
√

γL. (19)

When BL = [−1/2T,1/2T], it is easy to show that SNR4 = SNR2 +SNR2/SNR1 −1 ≥
SNR2. Thus, this signaling scheme outperforms optimal focusing.

PERFORMANCE COMPARISON

To compare the performance of various techniques, a channel model based on the geom-
etry of shallow water multipath is used. We look at repeated surface-bottom reflections
and take into account P multipath arrivals, each characterized by a gain cp, delay τp and
angle of arrival θp. Nominal acoustic propagation loss that occurs for practical spread-
ing at carrier frequency fc=15 kHz is used to compute the gains. The channel transfer
functions, observed at d-spaced elements m = 1...M are computed as

Cm( f ) =
P

∑
p=1

cm,pe− j2π f τp,where cm,p = cpe− j(m−1)ϕp and ϕp = 2π
fc

c
d sinθp. (20)



As an example, we use a channel of depth 75 m, range 3 km, and the system mounted
near the bottom. The resulting multipath profile for P = 3 is shown in Fig.2. The channel
function γ( f ) is shown for M = 4 and 32, together with the desired system response
X( f ), chosen to provide maximal bit rate for ISI-free transmission in bandwidth B =
1/T=5 kHz (10 kbps with 4-PSK, or 15 kbps with 8-PSK). The impulse response of the
overall system obtained with TR is also shown, and is evidently far from ideal. As the
number of array elements is increased, γ( f ) tends to flatten out, resulting in better, but
not complete suppression of multipath through TR.
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FIGURE 2. Multipath profile of the example channel (left). Composite channel power spectral density
is γ( f ), and the impulse response of TR corresponding to X( f )γ( f ). Multipath coefficients are normalized
such that M ∑p |c2

p| = 1, and half wavelength spacing between array elements is used.

Figure 3 summarizes performance results. Looking at M = 4 case, we first confirm
that two-sided adjustment (9, solid ‘�’) outperforms one-sided adjustment (12, dashed
‘�’) in optimal focusing, but more interestingly, we observe that the difference in per-
formance is small. This is an encouraging observation from the viewpoint of designing
a practical system with restricted processing complexity. The performance of TR (13,
dashed) is inferior to optimal focusing and to all other schemes at practical SNR, with
loss becoming quite large even at a moderate E/N0 of 10 dB - 15 dB. It saturates there-
after at a value 1/ρ. Some of the loss is recovered by the use of equalizer in conjunction
with TR (15,‘+’); however, this system compares poorly with the standard equalizer
(16, dashed ‘o’) as E/N0 increases to more than a few dB. Finally, we confirm that
equalization using optimized transmit filters (18, ‘*’) provides an upper bound on the
performance of all other schemes. More importantly, we observe that this scheme offers
negligible improvement over focusing, which allows a much easier implementation.

With M = 32, the performance of TR is improved; nonetheless, saturation is still
notable. Equalization in conjunction with TR now outperforms standard equalization,
while the performance of both focusing methods tends to the same optimal curve.

CONCLUSION

Because it ignores residual ISI, TR exhibits performance saturation, and strongly de-
pends on the use of a large array. When this can be afforded (e.g. in a network whose
base station uses a large array to spatially isolate multiple users) TR offers a solution for



−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

E/No [dB]

S
N

R
ou

t [
dB

]
^^^ solid: 2−side focusing (up/down)

^^^ dashed: 1−side focusing (up/down)

dashed: time−reversal

+++: eq. (down, time−reversal at tx.)

ooo dashed: eq. (down, standard tx.)

ooo solid: eq. (up, standard tx.)

***: eq. (up/down, opt. tx.)

M=4

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

E/No [dB]

S
N

R
ou

t [
dB

]

^^^ solid: 2−side focusing (up/down)

^^^ dashed: 1−side focusing (up/down)

dashed: time−reversal

+++: eq. (down, time−reversal at tx.)

ooo dashed: eq. (down, standard tx.)

ooo solid: eq. (up, standard tx.)

***: eq. (up/down, opt. tx.)

M=32

FIGURE 3. Performance of various techniques on the example channel.

minimal-complexity processing. With a smaller array, however, standard equalization
outperforms TR, and the use of equalization in conjunction with TR does not guar-
antee performance improvement over standard equalization. Spatio-temporal focusing
proposed in this paper guarantees maximal SNR and elimination of ISI for an arbitrary
array size. It outperforms TR at the expense of additional filtering. If filter adjustment
is constrained to the array side only, one-sided focusing offers an excellent trade-off be-
tween complexity and performance. It thus represents a solution for systems that cannot
deploy large arrays and have limited processing power.

Future work will concentrate on experimental validation of spatio-temporal focusing
aided by adaptive channel estimation. Two types of errors will guide the practical
system performance: error due to noise and error due to time-variability of the channel.
Analytical work will address system optimization with imperfect channel knowledge.
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