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The fluid-structure interaction technique provides a paradigm for solving scattering from elastic

structures embedded in an environment characterized by a Green’s function, by a combination of

finite and boundary element methods. In this technique, the finite element method is used to discre-

tize the equations of motion for the structure and the Helmholtz-Kirchhoff integral with the appro-

priate Green’s function is used to produce the discrete pressure field in the exterior medium. The

two systems of equations are coupled at the surface of the structure by imposing the continuity of

pressure and normal particle velocity. The present method condenses the finite element model so

that finally only the boundary element problem needs to be solved. This results in a significant

reduction in the number of unknowns and hence a much lower cost. In this paper, the fluid-

structure interaction method is specialized to axially-symmetric objects for non-axially-symmetric

loading in free space using a circumferential Fourier expansion of the fields. The specialization of

the method to axially-symmetric objects results in even further significant reductions in computa-

tion. The method is validated using well-known benchmark solutions. A derivation of the method

for an arbitrarily-shaped elastic structure embedded in an arbitrary environment characterized by a

Green’s function is given in the Appendix. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

The problem of determining the interaction between a

submerged elastic structure and its surrounding fluid is of

considerable interest, particularly in underwater acoustics

and aeronautics where it is required to determine the acoustic

field about an arbitrary three-dimensional (3D) structure.

While the standard method of a solution for an arbitrary elas-

tic structure is the finite element method, the solution of the

reduced wave equation in the surrounding medium is best

handled by the boundary integral equation, as it replaces the

infinite domain problem by an integral over the surface of

the submerged structure. Furthermore, the boundary integral

method has the advantage of reducing the dimensionality of

the problem by one. In contrast, the finite element method is

not well-suited for solving the wave equation in the sur-

rounding fluid environment due to difficulty in satisfying the

radiation condition as well as due to the demands on the

mesh size and the difficulty in generating the fluid mesh.

For these reasons, the problem of fluid-structure interac-

tion is perhaps best treated by a combination of the finite ele-

ment method to model the motion of the structure and the

boundary integral method to model the acoustic field in its

surrounding medium, where the coupling between the two

models is achieved by imposing the continuity of pressure

and normal particle velocity at the surface of the structure.

The coupled finite and boundary integral method has been

used by several authors in recent years1,2 (also see Amini

et al.3 and the references therein). A good review of the

method is given recently by Ref. 4. The main differences in

these approaches are the particular finite element package

and boundary integral formulation employed, the numerical

approximation used, and the details of the method of

coupling.

In this paper, we specialize the fluid-structure interaction

method to axially-symmetric objects in three dimensions enso-

nified by a non-axially-symmetric incident field.5 In the sur-

rounding fluid, the axial symmetry of the structure allows for

the incident field to be expanded in a circumferential Fourier

series, essentially reducing a 3D problem into a series of two-

dimensional (2D) problems, one for each circumferential order.

Application of such a model was first shown by Wilson in static

stress analysis.6 A textbook account of such a technique (in a

different setting) has been given by Zienkiewicz.7 More

recently, Winnicki and Zienkiewicz8 showed this procedure to

be an efficient alternative to a 3D analysis for nonlinear visco-

plastic analysis; Spilker and Daugirda9 expanded the method in

the context of hybrid finite element methods; Carter and

Booker10 studied soil consolidation; Danielson and Tielking,11

Kaiser et al.,12 and Kukudzhanov and Shneiderman13 applied

the technique to nonlinear static analysis. In the present work,

this technique is expanded to include the case of free

vibrations.

This paper is organized in the following way: In Sec. II

the fluid-structure interaction method is derived for axially-

symmetric structures with a general 3D response. In Sec. III,a)Electronic mail: abawi@hlsresearch.com
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the boundary element equations for a vibrating axially-

symmetric structure are derived. In Sec. IV the model is

applied to compute scattering from a solid steel sphere, an

aluminum spherical shell, and a hemispherical boss and the

results are compared with analytical solutions. To demon-

strate the speed of the model, it is used to compute the back-

scattered target strength as a function of aspect angle and

frequency for an aluminum cylinder and the results are com-

pared with those obtained by a finite element model designed

for axially-symmetric objects.14 This is followed by conclud-

ing remarks in Sec. V.

II. THE FLUID-STRUCTURE FORMULATION FOR
AXIALLY-SYMMETRIC STRUCTURES IN THREE
DIMENSIONS

The derivation of the fluid-structure formulation for an

axially-symmetric object in three dimensions is based on an

analogous formulation for an arbitrarily shaped elastic struc-

ture. Since the former derivation relies heavily on the nota-

tion used in the latter, we include the derivation for an

arbitrary structure in the Appendix for convenience and

completeness.

The analysis of axially-symmetric structures under

non-axially-symmetric loading can be effectively carried

out within the context of semi-analytic techniques. We

consider here an axially-symmetric 3D structure whose

material properties are independent of the circumferential

coordinate direction. Contrariwise, the applied load may

depend on this coordinate. The technique expresses the

variation of the load and the field variables in the circum-

ferential coordinate in the form of a Fourier series, thus

reducing the 3D analysis to a relatively small number of

uncoupled 2D analyses. Provided that the loading may be

represented by a reasonable number of harmonics, the

semi-analytic procedure will be more efficient than a full

3D analysis.

The displacement vector is written in the coordinate sys-

tem r; z; h as

urðr; z; hÞ
uzðr; z; hÞ
uhðr; z; hÞ

2
64

3
75 ¼ X

‘¼0;1;:::

C
ðsÞ
‘

h iXN

i¼1

Niðr; zÞ U
ðsÞ
i‘

h i(

þ C
ðaÞ
‘

h iXN

i¼1

Niðr; zÞ U
ðaÞ
i‘

h i)
; (1)

where Niðr; zÞ is the basis function in the plane of the cross-

section, ½UðsÞi‘ � and ½UðaÞi‘ � are vectors of the nodal displace-

ments at node i for the expansion terms symmetric with

respect to h¼ 0 displayed with the superscript (s) [or

anti-symmetric with respect to h¼ 0, indicated with a super-

script (a)],

U
ðsÞ
i‘

h i
¼

uir

uiz

uih

2
64

3
75
ðsÞ

‘

; U
ðaÞ
i‘

h i
¼

uir

uiz

uih

2
64

3
75
ðaÞ

‘

(2)

and the circumferential expansion coefficients expressed by

the matrices

C
ðsÞ
‘

h i
¼

cosð‘hÞ 0 0

0 cosð‘hÞ 0

0 0 �sinð‘hÞ

2
6664

3
7775;

C
ðaÞ
‘

h i
¼

sinð‘hÞ 0 0

0 sinð‘hÞ 0

0 0 cosð‘hÞ

2
64

3
75; (3)

with the same meaning of the superscripts. Here ‘ refers to

the circumferential Fourier mode.

In the cylindrical coordinate system, B is the symmetric-

gradient operator

B ¼

@

@r
; 0; 0

0;
@

@z
; 0

1

r
; 0;

1

r

@

@h
@

@z
;

@

@r
; 0

1

r

@

@h
; 0;

@

@r
� 1

r

0;
1

r

@

@h
;

@

@z

2
6666666666666666666664

3
7777777777777777777775

; (4)

to yield the strain components ½�� ¼ ½�r; �z; �h; �rz; �rh; �zh�
defined as

�r ¼
@ur

@r
; �z ¼

@uz

@z
; �h ¼

ur

r
þ 1

r

@uh

@h
;

�rz ¼
@ur

@z
þ @uz

@r
; �rh ¼

1

r

@ur

@h
þ @uh

@r
� uh

r
;

�zh ¼
1

r

@uz

@h
þ @uh

@z
: (5)

The basis functions Niðr; zÞ are generated on a mesh of

the cross-section, either quadrilateral or triangular. In this

work, we use ordinary isoparametric elements of linear order

of approximation.

Application of the differential operator, Eq. (4), to the

displacement vector, Eq. (1), yields the expression for the

strain vector

�½ � ¼
X

‘¼0;1;:::

AðsÞ‘
h iXN

i¼1

Bi½ � U
ðsÞ
i‘

h i(

þ AðaÞ‘
h iXN

i¼1

Bi½ � U
ðaÞ
i‘

h i)
; (6)

where we introduce the matrices
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AðsÞ‘
h i

¼

cosð‘hÞ 0 0 0 0 0

0 cosð‘hÞ 0 0 0 0

0 0 cosð‘hÞ 0 0 0

0 0 0 cosð‘hÞ 0 0

0 0 0 0 sinð‘hÞ 0

0 0 0 0 0 sinð‘hÞ

2
6666666664

3
7777777775

(7)

and

AðaÞ‘
h i

¼

sinð‘hÞ 0 0 0 0 0

0 sinð‘hÞ 0 0 0 0

0 0 sinð‘hÞ 0 0 0

0 0 0 sinð‘hÞ 0 0

0 0 0 0 �cosð‘hÞ 0

0 0 0 0 0 �cosð‘hÞ

2
6666666664

3
7777777775
; (8)

and the nodal strain-displacement matrix (compare with the

3D version [Eq. (A2)])

Bi½ � ¼

@Ni=@r 0 0

0 @Ni=@z 0

Ni=r 0 �‘Ni=r

@Ni=@z @Ni=@r 0

�‘Ni=r 0 ðNi=r � @Ni=@rÞ
0 �‘Ni=r �@Ni=@z

2
66666666664

3
77777777775
: (9)

The notation in this section resembles that of Spilker and

Daugrida9 except that the particular order r; z; h in which the

cylindrical coordinates and the corresponding unknowns are

arranged has been changed such that the coordinates in the

plane of the generating section are first and the circumferen-

tial coordinate is last.

For easy reference we list here the weighted residual

equation

�x2

ð
D�

duTqf u dV þ
ð

D�

duTBTDBu dV

þ
ð

S

duTpn dS ¼ 0: (10)

The details can be found in the Appendix where this equa-

tion is discussed as Eq. (A1). The integral over the volume

in Eq. (10) is separated into integration over the cross-

section and integration in the angular coordinate. So, for the

first term in Eq. (10) we obtain

�x2

ð
D�

duTqf u dV ¼ �x2

ð
A

ð2p

0

duTqf u dh dA; (11)

where dA is the cross-sectional area element. Upon substitu-

tion we find that the unlike (symmetric with anti-symmetric)

products ½CðsÞ‘ �½C
ðaÞ
‘ � integrate to zero in the circumferential

direction due to the identityð2p

0

sin ð‘hÞ cosðmhÞ dh ¼ 0: (12)

For the integrals of like terms we have

Icð‘;mÞ ¼
ð2p

0

cos ð‘hÞ cosðmhÞ dh

¼
2p; for ‘ ¼ m ¼ 0;
p; for ‘ ¼ m � 1;
0; otherwise

8<
: (13)

Isð‘;mÞ¼
ð2p

0

sinð‘hÞsinðmhÞdh¼ p; for ‘¼m�1;
0; otherwise

�
(14)

and therefore for the circumferential mode number ‘ the

3� 3 contributions to the mass matrix M
ðsÞ
‘ , coupling nodes

i, k are

M
ðsÞ
ik‘ ¼

Icð‘; ‘Þ 0 0

0 Icð‘; ‘Þ 0

0 0 Isð‘; ‘Þ

2
4

3
5ð

S

Niqf Nk dA; (15)

for the symmetric terms and

M
ðaÞ
ik‘ ¼

Isð‘; ‘Þ 0 0

0 Isð‘; ‘Þ 0

0 0 Icð‘; ‘Þ

2
4

3
5ð

S

Niqf Nk dA; (16)

for the anti-symmetric terms M
ðaÞ
‘ .

Here we consider only homogeneous isotropic solids

with the material stiffness matrix of the form
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D ¼

kþ 2G k k 0 0 0

k kþ 2G k 0 0 0

k k kþ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

2
666666664

3
777777775
; (17)

where we introduce the Lam�e constant

k ¼ E�

1þ �ð Þ 1� 2�ð Þ ; (18)

with E as the Young’s modulus, � as the Poisson ratio, and

G as the shear modulus. Extension of this formulation to

suitably anisotropic materials (such as composites) is

possible.

The second term in the weighted residual equation, Eq.

(10), is then expanded as follows: For the number of circum-

ferential modes ‘ and m and node numbers j and i we obtain

dU
ðsÞ
i‘

h iT
ð

D�

Bi½ �T AðsÞ‘
h i

D AðsÞm

h i
Bj½ � dV U

ðsÞ
jm

h i
; (19)

for the symmetric terms, which allows us to define a subma-

trix of the stiffness matrix K
ðsÞ
‘ for the symmetric modes that

couples nodes j and i,

K
ðsÞ
ij‘ ¼

ð
D�

Bi½ �T AðsÞ‘
h i

D AðsÞm

h i
Bj½ � dV: (20)

The submatrix of the stiffness matrix K
ðaÞ
‘ for the anti-

symmetric terms follows analogously by replacing ½AðsÞ‘ �
with ½AðaÞ‘ � and so on. The result will be non-zero only for

‘ ¼ m. This can be shown by considering the products

AðsÞ‘
h i

D AðsÞm

h i
; (21)

where the block structure of the material stiffness matrix

together with the special structure of the ½AðsÞ‘ � matrices

ensure that the integrals in the circumferential direction still

satisfy the relationships described by the symbols Icð‘;mÞ
and Isð‘;mÞ. A similar result is derived for the product with

two anti-symmetric terms.

Analogously, the unlike products

AðsÞ‘
h i

D AðaÞm

h i
(22)

(and similar) will all vanish when integrated in the circum-

ferential direction.Since the symmetric and anti-symmetric

terms decouple, the equation of motion of the structure in

matrix form [which for the 3D setting is given in the

Appendix as Eq. (A5)] is written separately for the symmet-

ric and anti-symmetric terms of the circumferential expan-

sion as

ð�x2M
ðsÞ
‘ þK

ðsÞ
‘ ÞU

ðsÞ
‘ ¼ F

ðsÞ
‘ (23)

and

ð�x2M
ðaÞ
‘ þK

ðaÞ
‘ ÞU

ðaÞ
‘ ¼ F

ðaÞ
‘ : (24)

Here ‘ is the number of the circumferential mode, and the

symmetric mass matrix is composed of the sub-matrices [Eq.

(15)], and the anti-symmetric mass matrix is composed of

sub-matrices [Eq. (16)]. The symmetric stiffness matrix is

composed of sub-matrices [Eq. (20)] and the anti-symmetric

stiffness matrix is obtained analogously.

We assume the total pressure in the fluid surrounding the

structure to be expanded in symmetric and anti-symmetric

terms as

p ¼
X

‘¼0;1;:::

p
ðsÞ
‘ cosð‘hÞ þ

X
‘¼1;2;:::

p
ðaÞ
‘ sinð‘hÞ: (25)

The loading vectors are obtained from the expression for the

3D case given in the Appendix as Eq. (A8) by substitution of

the expansion (25).

A. Coupling of the boundary element and
axially-symmetric finite element models

The coupling of the axially-symmetric finite element

model with the Fourier circumferential expansion and the

boundary element model is shown in the discrete form.

When the expansion [Eq. (25)] is introduced in the third

term of the weighted residual equation, Eq. (10), the result-

ing products of sines and cosines from du p will result in the

3� 1 coupling submatrix

L
ðsÞ
‘Kq ¼

ð
Cq

NK

Icð‘; ‘Þ 0 0

0 Icð‘; ‘Þ 0

0 0 0

2
64

3
75ndCq; (26)

for symmetric terms of the circumferential mode ‘ to couple

the pressure degree of freedom q with the displacement

degrees of freedom at node K; Cq is the line segment in the

generating section in the rz plane associated with the pres-

sure degree of freedom q, and dC is an element of the bound-

ary curve. For the anti-symmetric terms we obtain

L
ðaÞ
‘Kq ¼

ð
Cq

NK

Isð‘; ‘Þ 0 0

0 Isð‘; ‘Þ 0

0 0 0

2
64

3
75ndCq: (27)

The discrete symmetric and anti-symmetric forces acting on

the surface of the solid due to the total pressure in the fluid

are then written as

F
ðs;aÞ
‘ ¼ �L

ðs;aÞ
‘ P

ðs;aÞ
‘ ; (28)

where P is the vector of the total pressure values at the line

segments at the boundary of the cross-section exposed to the

fluid.

The mean normal velocity in the boundary element

method (BEM), piecewise constant along the surface panels,

can be expressed from the vector of the finite element (FE)

nodal velocities as shown below, where a submatrix of the

matrix L0,

3640 J. Acoust. Soc. Am. 142 (6), December 2017 Ahmad T. Abawi and Petr Krysl



L0qK ¼
ð

sq

dCq

 !�1ð
Cq

NKnTdsq; (29)

couples the mean normal velocity on the surface panel q to

the velocity of node K. The discrete form of the relationship

of the normal velocities at the boundary line segments and

the velocity of the nodes on the boundary of the structure

follows as

Vn ¼ L0V: (30)

The velocity of the structure can be expressed at steady state

through the displacement, and that can be obtained from the

equation of motion if the loads on the surface are known

(refer to the Appendix for details). From Eq. (29), we can

write

V
ðs;aÞ
‘ ¼ �ixD�1L

Tðs;aÞ
‘ Uðs;aÞ; (31)

for each circumferential order. Combining Eqs. (23), (24),

(28), and (31), we obtain

V
ðs;aÞ
‘ ¼ ixD�1L

Tðs;aÞ
‘ ð�x2M

ðs;aÞ
‘ þK

ðs;aÞ
‘ Þ�1

L
ðs;aÞ
‘ P

ðs;aÞ
‘ :

(32)

This is the axially-symmetric counterpart of Eq. (A20).

In Sec. III, we derive equations for the radiated field of a

vibrating structure in its surrounding fluid medium.

B. Boundary conditions for the structural equations

Even when the scatterer is unsupported (free-floating),

the axially-symmetric 3D formulation requires the imposi-

tion of some boundary conditions to guarantee that the dis-

placement field remains continuous:

(1) For the higher circumferential modes, ‘ 6¼ 0, the con-

straint uz ¼ 0 needs to be enforced for all nodes located

on the axis of symmetry.

(2) For the fundamental circumferential modes, ‘ ¼ 0, we

require the following:

(a) For the symmetric case: The constraint uh ¼ 0

needs to be enforced at all nodes, and the constraint

ur ¼ 0 needs to be enforced for all nodes located

on the axis of symmetry.

(b) For the anti-symmetric case: The constraint ur

¼ uz ¼ 0 needs to be enforced at all nodes, and the

constraint uh ¼ 0 needs to be enforced for all nodes

located on the axis of symmetry.

III. THE FIELD OF A VIBRATING AXIALLY-SYMMETRIC
STRUCTURE

For an acoustic wave, pincðxÞ, incident on the structure,

resulting in a scattered acoustic wave, pscatðxÞ, the integral

equation for the total acoustic wave, pðxÞ ¼ pincðxÞ þ pscatðxÞ,
is given by

ð
p x0ð Þ @G x; x0ð Þ

@n0
þ ixqf vn x0ð ÞG x; x0ð Þ

� �
dS0

¼

p xð Þ � pinc xð Þ; x 2 Vþ;

1

2
p xð Þ � pinc xð Þ; x 2 S;

�pinc xð Þ; x 2 V�;

8>>><
>>>:

(33)

where x denotes the field coordinates and x0 denotes the

source coordinates (surface of the scatterer), dS0 is the sur-

face area element, V� denotes the space in R3 occupied by

the deformable structure with closed surface S, and Vþ
denotes the unbounded fluid region exterior to S with den-

sity qf and sound speed c, and where the gradient of the

total pressure is expressed in terms of the normal surface

velocity of the vibrating surface (positive into the acoustic

fluid). To obtain the solution in the surrounding fluid,

we substitute Eq. (25) into the middle equation in Eq. (33),

to get

1

2

X1
‘¼0

p
sð Þ
‘ r; zð Þcos ‘hþ p

að Þ
‘ r; zð Þsin ‘h

h i

�
X1
‘¼0

ð
S0

p
sð Þ
‘ r0; z0ð Þcos ‘h0 þ p

að Þ
‘ r0; z0ð Þsin ‘h0

h i

� @G x; x0ð Þ
@n0

dS0

¼ �ixq
X1
‘¼0

ð
S0

v sð Þ
‘ r0; z0ð Þcos ‘h0 þ v að Þ

‘ r0; z0ð Þsin ‘h0
h i

� G x; x0ð ÞdS0 þ pinc xð Þ; (34)

where a similar expansion as in Eq. (25) has been used for

the normal velocity, v. To facilitate the derivation of the

axially-symmetric equations, refer to Fig. 1. Applying the

integral operator

ð2p

0

cos mh dh; (35)

to the above equation results in

FIG. 1. The geometry used in deriving the axially-symmetric equations.
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1

2

X1
‘¼0

ð2p

0

p
sð Þ
‘ r; zð Þcos ‘h cos mh dh

�
X1
‘¼0

ð2p

0

ð
S0

p
sð Þ
‘ r0; z0ð Þcos ‘h0 cos mh dh

@G x; x0ð Þ
@n0

dS0

¼ �ixq
X1
‘¼0

ð2p

0

ð
S0
v sð Þ
‘ r0; z0ð Þcos ‘h0 cos mh dh

� G x; x0ð ÞdS0 þ
ð2p

0

pinc xð Þcos mh dh; (36)

where Eq. (12) has been used. It can be shown that in free

space, where the free space Green’s functions Gðx; x0Þ is a

function of the difference of the angles b ¼ ðh� h0Þ, there is

no contribution from the off-diagonal terms ð‘ 6¼ mÞ in Eq.

(36). For a general environment (not free space), the contri-

bution from the off-diagonal terms results in the coupling of

coefficients of various circumferential orders, resulting in a

numerically-intensive system of coupled equations, which

negates the numerical advantages offered by an axially-

symmetric formulation. For this reason, the rest of this for-

mulation is specialized to free space. Writing dS0 ¼ r0dh0dC0,
where C is the generating curve shown in Fig. 1, we get for

‘ ¼ m,

1

2
�pp sð Þ

m r; zð Þ �
1

2

ð2p

0

ð2p

0

ð
C0

p sð Þ
m r0; z0ð Þ cos m h0 � hð Þð

þ cos m h0 þ hð ÞÞ @G x; x0ð Þ
@n0

r0dC0dhdh0

¼ �ixq
2

ð2p

0

ð2p

0

ð
C0

v sð Þ
m r0; z0ð Þ cos m h0 � hð Þð

þ cos m h0 þ hð ÞÞG x; x0ð Þr0dC0dhdh0 þ pinc sð Þ
m r; zð Þ;

(37)

where �¼ 2 for m¼ 0 and �¼ 1 otherwise. In deriving Eq.

(37) use has been made of the identity

cos mh0 cos mh ¼ 1

2
cos m h0 � hð Þ þ cos m h0 þ hð Þ
� �

;

(38)

and Eq. (13) has been used to get its first term. The last term

in Eq. (37) is defined as

pincðsÞ
m ðr; zÞ ¼

ð2p

0

pincðxÞ cos mh dh: (39)

For m¼ 0, Eq. (37) becomes

1

2
p

sð Þ
0 r;zð Þ�

1

2p

ð2p

0

ð2p

0

ð
C0

p
sð Þ

0 r0;z0ð Þ@G x;x0ð Þ
@n0

r0dC0dhdh0

¼�ixq
2p

ð2p

0

ð2p

0

ð
C0

v sð Þ
0 r0;z0ð ÞG x;x0ð Þr0dC0dhdh0

þ 1

2p
p

inc sð Þ
0 r;zð Þ: (40)

Since the angular dependence in the above integrals comes

as the difference of the angles in the Green’s function

G x; x0ð Þ ¼ eikjx�x0j

4pjx� x0j (41)

and

jx�x0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ r02�2rr0 cosðh�h0Þþ ðz� z0Þ2

q
; (42)

by a change of variables one of the integrals can be inte-

grated to give 2p and we have

1

2
p

sð Þ
0 r; zð Þ �

ð
C0

ð2p

0

p
sð Þ

0 r0; z0ð Þ @G x; x0ð Þ
@n0

db0r0dC0

¼ �ixq
ð

C0

ð2p

0

v
sð Þ

0 r0; z0ð ÞG x; x0ð Þdb0r0dC0

þ 1

2p
p

inc sð Þ
0 r; zð Þ: (43)

For m 6¼ 0, the same properties of the free space Green’s

function results in no contribution from terms containing the

sum of the angles and inð2p

0

ð2p

0

Gðx; x0Þ cos mðh� h0Þdhdh0

¼ 2p
ð2p

0

Gðx; x0Þ cos mb0db0; (44)

in terms containing the difference of the angles. Then Eq.

(37) is reduced to

1

2
p sð Þ

m r; zð Þ �
ð

C0

ð2p

0

p sð Þ
m r0; z0ð Þcos mb0

@G x; x0ð Þ
@n0

db0r0dC0

¼ �ixq
ð

C0

ð2p

0

v sð Þ
m r0; z0ð Þcos mb0G x; x0ð Þdb0r0dC0

þ 1

p
pinc sð Þ

m r; zð Þ: (45)

Defining

g sð Þ
m r; z; r0; z0ð Þ ¼

ð2p

0

G x; x0ð Þcos mb0db0;

h sð Þ
m r; z; r0; z0ð Þ ¼

ð2p

0

@G x; x0ð Þ
@n0

cos mb0db0; (46)

we obtain the boundary element integral equation for the

symmetric circumferential coefficients for all m,

1

2
p sð Þ

m r; zð Þ �
ð

C0
p sð Þ

m r0; z0ð Þh sð Þ
m r; z; r0; z0ð Þr0dC0

¼ �ixq
ð

C0
v sð Þ

m r0; z0ð Þg sð Þ
m r; z; r0; z0ð Þr0dC0

þ 1

�p
pinc sð Þ

m r; zð Þ: (47)

Next, applying the integral operator, m 6¼ 0,

ð2p

0

sin mh dh; (48)
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to Eq. (34) gives the boundary element integral equation for

the antisymmetric circumferential coefficients for all m> 0,

1

2
p að Þ

m r; zð Þ �
ð

C0
p að Þ

m r0; z0ð Þh að Þ
m r; z; r0; z0ð Þr0dC0

¼ �ixq
ð

C0
v að Þ

m r0; z0ð Þg að Þ
m r; z; r0; z0ð Þr0dC0

þ 1

p
pinc að Þ

m r; zð Þ; (49)

where

pincðaÞ
m ðr; zÞ ¼

ð2p

0

pincðxÞ sin mh dh (50)

and

gðsÞm ðr; z; r0; z0Þ ¼ gðaÞm ðr; z; r0; z0Þ;
hðsÞm ðr; z; r0; z0Þ ¼ hðaÞm ðr; z; r0; z0Þ: (51)

For both the symmetric and antisymmetric circumferential

orders, Eqs. (47) and (49) can be written as

A
ðs;aÞ
‘ P

ðs;aÞ
‘ ¼ B‘V

ðs;aÞ
‘ þ P

ðs;aÞ
‘;inc; (52)

where the components of matrices A
ðs;aÞ
‘ and B

ðs;aÞ
‘ are given by

A
s;að Þ
‘ m; nð Þ ¼

1

2
dmn �

ð
C0

h
s;að Þ
‘ rm; zm; r0n; zn

� �
r0ndC0 (53)

and

B
ðs;aÞ
‘ ðm; nÞ ¼ �ixq

ð
C0

g
ðs;aÞ
‘ ðrm; zm; r0n; z

0
nÞr0ndC0: (54)

Substituting Eq. (32) into Eq. (52) gives the following sys-

tem of complex linear algebraic equations for each circum-

ferential Fourier mode ‘:

A
ðs;aÞ
‘ � ixB

ðs;aÞ
‘ D�1LT

‘

h
� ð�x2M

ðs;aÞ
‘ þK

ðs;aÞ
‘ Þ�1

L‘

i
P
ðs;aÞ
‘ ¼ P

ðs;aÞ
‘;inc: (55)

These equations are the counterparts of Eq. (A19) for an

axially-symmetric scatterer ensonified by a 3D incident field

obtained using the Fourier expansion in the circumferential

direction. The circumferential components of normal veloc-

ity can be computed using Eq. (32), which can be used to

compute the circumferential components of the scattered

pressure field at the receiver, xr, using the Helmholtz-

Kirchhoff integral

pðs;aÞm ðrr; zrÞ ¼
ð

C0
pðs;aÞm ðr0; z0Þhðs;aÞm ðrr; zr; r0; z0Þr0dC0

�ixq
ð

C0
vðs;aÞm ðr0; z0Þgðs;aÞm ðrr; zr; r0; z0Þr0dC0;

(56)

and finally the above pressure components can be used to com-

pute the total scattered field at the receiver using Eq. (25).

It should be pointed out that the axially-symmetric

boundary integral equations, like any boundary integral

formulation of the Helmholtz equation, suffer from the well-

known non-uniqueness problem at certain frequencies asso-

ciated with the eigenfrequencies of the interior problem.

This problem has no physical significance but arises as a math-

ematical artifact by the very process of reducing the exterior

domain to the boundary. Detailed discussions of the mathemat-

ical aspects of this problem can be found in the works of

Smithies,15 Kleinman and Roach,16 and Burton17 among

others. Methods of overcoming the non-uniqueness problem

have been discussed by Schenck18 and Burton and Miller.19 In

this paper we use the Combined Helmholtz Integral Equation

Formulation (CHIEF) proposed by Schenck.18

IV. VALIDATION

In this section, we validate the method for a solid steel

sphere, an aluminum spherical shell, and an acoustically soft

and hard semi-sphere on an infinite plane, all of which have

analytic solutions. Then to demonstrate the speed of the

model, we compute the backscattered target strength as a

function of aspect angle and frequency for an aluminum cyl-

inder and compare the results to those obtained from a finite

element model designed for axially-symmetric targets.14 The

properties of the targets used in validating the model are

listed in Table I.

For an axially-symmetric target, we only need to mesh

the generating planar section that, when rotated around its

axis of symmetry, produces the target. In the case of a solid

sphere, this would be a semicircle, with its diameter as the

axis of symmetry. For the solid steel sphere, we meshed the

generating semicircle by 5354 quadrilateral elements. This is

equivalent to 15 elements per wavelength at the maximum

frequency of 10 kHz.

The scattered pressure for an incident wave ~k and in the

direction ~q is denoted by pð~k;~qÞ, which can be computed

using Eq. (25). We computed the backscattering amplitude,

T ¼ pð~k;�~kÞ, as a function of frequency, ranging from 0 to

10 kHz. The results for the solid steel sphere are shown in

Fig. 2, where the solution is compared with the classical par-

tial wave solution20 for a plane wave.

A comparison of the backscattering scattering amplitude,

T, also for a plane wave, from an empty aluminum spherical

shell for the same frequency range, computed using our

method and the partial wave method20 is shown in Fig. 3. The

radius of the sphere is 0.5 m and the shell thickness is 5 cm.

The generating planar section, which in this case is a 5-cm

wide, semi-circular strip was meshed using 5811 quadrilateral

TABLE I. The properties of the targets used in validating the model. r is the

radius, D is the shell thickness, L is the length, E is the Young’s modulus, q
is the density, and � is the Poisson ratio.

Target r (m) D (cm) L (m) E (Pa) q (kg/m3) �

Solid steel sphere 0.5 N/A N/A 2:05� 1011 7850 0.28

Aluminum spherical shell 0.5 5 N/A 72:3� 109 2700 0.35

Hemispherical boss 0.5 N/A N/A N/A N/A N/A

Solid aluminum cylinder 0.1524 N/A 0.6096 72:3� 109 2700 0.35
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elements (40 elements per wavelength at the maximum fre-

quency of 10 kHz). In both cases, there is excellent agreement

between our solutions and the benchmark solutions. The

Green’s function used in the above two cases is the free space

Green’s function given by Eq. (41). Another class of problems

with a slightly more complicated Green’s function, which also

lends itself to an analytical solution, is the case of an acousti-

cally soft or rigid hemisphere on an infinite plane satisfying

the same boundary conditions. This is also referred to as an

infinite plane with a hemispherical boss. The analytical solu-

tion is obtained from the partial wave solution referenced

above using the method of images by forming solutions for an

incident field and an image incident field. Since each solution

satisfies the boundary condition on the surface of the sphere,

their superposition can be used to enforce the same boundary

condition on the surface of symmetry and thus the entire sur-

face of interest. A similar procedure is used to compute scat-

tering for a hemispherical boss using our model. The Green’s

function used in our formulation for the acoustically soft case

with the infinite plane at z¼ 0 is

GDðr; z; h; r0; z0; h0Þ ¼ G1 � G2; (57)

where

G1 r; z; h; r0; z0; h0
� �
¼ eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr02�2rr0 cos h�h0ð Þþ z�z0ð Þ2
p

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos h� h0ð Þ þ z� z0ð Þ2

q ;

G2 r; z; h; r0; z0; h0
� �
¼ eik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr02�2rr0 cos h�h0ð Þþ zþz0ð Þ2
p

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cos h� h0ð Þ þ zþ z0ð Þ2

q : (58)

For the rigid case the Green’s function is given by

GNðr; z; h; r0; z0; h0Þ ¼ G1 þ G2: (59)

These Green’s functions guarantee that the total field

vanishes on the infinite plane for the acoustically soft case

and its normal derivative vanishes on the same surface for

the acoustically hard case. The BEM then enforces the same

boundary conditions on the surface of the hemispherical

boss, resulting in a self-consistent solution. In this example,

the radius of the hemispherical boss is 0.5 m and the problem

is solved for a plane wave making a 30� angle with the posi-

tive x axis for two frequencies of 5 and 10 kHz. The scat-

tered field is computed as a function of the receiver angle.

The problem is solved using ten Fourier circumferential

orders. Since for the above boundary conditions the surface

is non-penetrable, this is only a boundary element problem.

Hence, the scattering is purely geometrical and is caused by

a surface whose cross section is shown in the inset in Fig. 4.

The quarter-circle generating curve produced the surface of

the hemispherical boss by revolving around a diameter per-

pendicular to the infinite plane (see the inset in Fig. 4). This

curve was meshed by 158 linear elements. The boundary

conditions (acoustically soft or hard) on the infinite plane are

enforced by the Green’s functions defined by Eqs. (57) and

(59) and on the surface of the hemisphere by the scattering

model. The solutions are shown in Fig. 4, where they are

compared with the corresponding exact partial wave

solutions.

To demonstrate the speed of the model, we next com-

pute the backscattering target strength as a function of aspect

angle and frequency for an aluminum cylinder in free space.

The radius of the cylinder is 0.5 ft, its height is 2.0 ft, and the

incident field is a plane wave. The generating plane in

this case is a 2� 0.5 ft rectangle, which was meshed by

900 quadrilateral elements (15 elements per wavelength at

10 kHz). We used 10 circumferential orders in the axially-

symmetric solution with 100 Hz frequency steps from 1 to

10 kHz and 1� angular steps from 0� to 90�. The results are

FIG. 2. (Color online) The backscattering amplitude as a function of fre-

quency for a solid steel sphere of radius 0.5 m. The solid black line repre-

sents the partial wave solution and the red dashed-dotted line represents the

coupled finite-boundary element solution. The frequency step is 50 Hz.

FIG. 3. (Color online) The backscattering amplitude as a function of fre-

quency for a 0.5 m, empty, aluminum spherical shell. The solid black line

represents the partial wave solution and the red dashed-dotted line represents

the coupled finite-boundary element solution. The frequency step is 50 Hz.
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shown in Fig. 5, where the figure on the left is obtained using

Axi-Scat developed by Zampolli et al.14 The latter is an

axially-symmetric model that solves the problem by using

the axially-symmetric module in COMSOL (Ref. 21) for

each circumferential order and then performs a Fourier sum

for each frequency and aspect angle. The small differences

between the two solutions can be due to differences in dis-

cretization, numerical computation of integrals, the types of

basis functions used, and other factors. Furthermore, Axi-

Scat uses Perfectly Matched Layers (PMLs) to prevent

reflections from the boundaries of the computational domain.

If the PML is not implemented properly, superfluous reflec-

tions can occur, and sometimes they cannot be eliminated

entirely. Our solution, being a boundary element solution,

does not use a PML. It is usually difficult to ensure that all

the above parameters are the same, so small differences are

bound to occur. We made sure that both solutions have con-

verged by reducing the mesh size and increasing the number

of circumferential orders until the solution stabilized.

Usually, a mesh size of 15 elements per wavelength at the

highest frequency and a maximum circumferential order of

10 are adequate. The same parameters can affect the Axi-

Scat solution and we made sure that both numbers were

adequate.

In our computations, COMSOL was not used. Instead

we used the equations developed in Sec. II to compute scat-

tering from an elastic structure and the equations developed

in Sec. III to compute the acoustic field at the receiver.22 We

ran both models on a Mac Pro with 12 processors. The Axi-

Scat solution took 12 h to run, and in contrast our axially-

symmetric model only took 19 min to run. One of the rea-

sons why our model is so much faster is that it solves a

boundary element problem with fewer number of unknowns.

The other reason is that in computing the scattered field we

only invert Eq. (55) for each frequency, but not for each

aspect angle since the incident field is on the right-hand side.

In comparison, Axi-Scat solves an axially-symmetric finite

element problem for each frequency, aspect angle, and cir-

cumferential order.

V. SUMMARY AND CONCLUSIONS

In this paper we used the fluid-structure interaction

method to develop a technique to compute scattering from

axially-symmetric elastic structures in three dimensions, i.e.,

ensonified by a non-axially-symmetric field in free space.

The fluid-structure interaction method is based on formulat-

ing the equations of motion in the structure using the finite

element method and formulating the sound propagation in

the surrounding environment using the boundary integral

method. The two methods are self-consistently coupled by

FIG. 5. (Color online) The backscattering target strength for a 1-ft by 2-ft

aluminum cylinder as a function aspect angle and frequency. Zero degree

and 90� correspond to backscattering from broadside and end-fire, respec-

tively. The figure on the left was produced by the Axi-Scat model and the

one on the right by the model derived in this paper.

FIG. 4. (Color online) The scattering amplitude as a function of the receiver

angle for a hemispherical boss. The scattering geometry is shown in the inset

in the top left panel. The incident plane wave makes an angle c ¼ 30� with

the x axis in all cases. The receiver angle, # varies from zero to 180�. The

top and bottom panels show the results for the acoustically soft and rigid

cases, respectively. The left and right panels are for the incident frequency

of 5 and 10 kHz. The solid black line represents the partial wave solution

and the red dashed-dotted line represents the coupled finite-boundary ele-

ment solution.
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imposing the continuity of pressure and normal particle

velocity on the surface of the structure. This method com-

bines the accuracy of the finite element method to model the

elastic structure and the robustness of the BEM to model the

acoustic field in the surrounding fluid environment to pro-

duce a numerically accurate and self-consistent solution.

The axially-symmetric nature of the structure allows the use

of a Fourier expansion in the circumferential direction to

enable the model to compute scattering from objects exposed

to 3D (non-axially-symmetric) incident fields. This method

essentially reduces a 3D problem to a series of 2D problems,

one for each circumferential order, delivering significant

reductions in computation time.

The model was validated using three analytical solutions

and an axially-symmetric finite element solution (Axi-Scat).

The latter was used to compute the backscattering target

strength as a function of frequency and aspect angle for a

finite aluminum cylinder. A comparison between our solu-

tion and that of Axi-Scat shows that our model is more than

36 times faster. A derivation of the fluid-structure formula-

tion for an arbitrary structure is provided in the Appendix.
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APPENDIX: FLUID-STRUCTURE FORMULATION FOR
AN ARBITRARY STRUCTURE

The scattered field from a structure for an incident field,

pincðxÞ, is given by Eq. (33), where Gðx; x0Þ represents the

Green’s function for any environment in which the scattering

takes place.

In Eq. (33) there are two unknown quantities, the pres-

sure p and the surface normal velocity vn. Consequently, an

additional equation is needed. The requisite second equation

is provided by the weighted-residual formulation of the

steady-state vibration of a solid structure. We assume that

body forces are absent and the vibrating solid is free of dis-

placement constraints, i.e., the solid is free-floating in the

acoustic medium. The weak formulation of the governing

equations then results in the Galerkin weighted residual

equation Eq. (10),

�x2

ð
D�

duTqudVþ
ð

D�

duTBTDBudVþ
ð

S

duTpndS¼0:

(A1)

Here V ¼ V� and S are the solid domain volume and bound-

ary surface, respectively, u is the displacement, D is the 6� 6

material stiffness matrix defined in Eq. (17), and B is the sym-

metric gradient operator that generates the symmetrized

small-deformation gradient tensor components, including a

factor of 2 required for the shear components in the present

“Voigt” vector formulation

B ¼

@=@x 0 0

0 @=@y 0

0 0 @=@z

@=@y @=@x 0

@=@z 0 @=@x

0 @=@z @=@y

2
6666666664

3
7777777775
: (A2)

Both the displacements of the solid u in D� and the dis-

tribution of the total pressure p in the surrounding medium

are unknown. To produce a closed system of coupled equa-

tions, the relationship between velocity and displacement

u ¼ �ixv; (A3)

is used in Eq. (33) and the equation of motion for the struc-

ture Eq. (A1). In this work, the continuous Galerkin method

employs hexahedral eight-node elements to discretize Eq.

(A1) for a solid structure. Full Gaussian quadrature is used

for the dilatational part of the strain energy, and the shear

energy is under-integrated with one-point Gaussian quadra-

ture. Note that the bounding surface of the finite element

model of the solid meshes the surface S with the quadrilat-

eral faces of the hexahedral finite elements. These quadrilat-

erals are converted to panels over which the boundary

element model establishes its discretization.

Introducing the finite element basis functions and the

displacement degrees of freedom at the nodes

uðx; tÞ½ � ¼
uxðx; tÞ
uyðx; tÞ
uzðx; tÞ

2
64

3
75 ¼XN

i¼1

NiðxÞ uiðtÞ½ �

¼
XN

i¼1

NiðxÞ
uixðtÞ
uiyðtÞ
uizðtÞ

2
4

3
5; (A4)

Eq. (A1) is converted to the complex algebraic equation

ð�x2MþKÞU ¼ F; (A5)

where the mass and stiffness matrices consist of 3� 3 sub-

matrices coupling nodes i and k: the mass matrix

Mik ¼
1 0 0

0 1 0

0 0 1

2
64

3
75ð

V�

NiqNk dV� (A6)

and the stiffness matrix

Kij ¼
ð

V�

BNi½ �TD BNj½ � dV�: (A7)

In the above, U is the vector of the displacement degrees of

freedom, and the vector of the nodal forces resulting from the

impinging acoustic wave loading consists of 3� 1 matrices
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Fk ¼ �
ð

S

pnNkdS (A8)

for each node k.

The middle equation in Eq. (33) can be written

1

2
p xð Þ �

ð
p x0ð Þ@G x;x0ð Þ

@n
dS0

¼ �ixq
ð
vn x0ð ÞG x;x0ð ÞdS0 þ pinc xð Þ; x 2 S: (A9)

To discretize the above, we expand both p and vn in a linear

combination using basis functions /i that are piecewise con-

stant over each of the quadrilateral panels of the tiling of the

surface

pðxÞ ¼
XN

i¼1

pi/iðxÞ; vnðxÞ ¼
XN

i¼1

vn;i/iðxÞ: (A10)

Each of the quadrilateral panels corresponds to a face of the

hexahedral element employed for the solid scatterer that is

exposed to the acoustic medium.

Substituting Eq. (A10) into Eq. (A9) results in

AP ¼ BVn þ Pinc; (A11)

where

Aij ¼
dij

2
�
ð

sj

/j x0ð Þ @G xi; x
0ð Þ

@n0
dS0;

Bij ¼ �ixq
ð

sj

/j x0ð ÞG xi; y
0� �

dS0; (A12)

where in this paper we use Gaussian quadrature to evaluate

the above integrals. Both integrands in Eq. (A12) possess

integrable singularities when x! x0, which can be handled

by a variety of methods (see Colton et al.,23 Burton,17 and

the references therein). In this paper we employ the method

used by Everstine and Henderson.24

The finite and boundary element models are coupled in

the discrete form. The discrete equations for the finite ele-

ment model are given by Eq. (A5). The vector F reflects the

loading of the scatterer by the total pressure on its surface.

Approximating the distribution of the total pressure on the

surface using Eq. (A10), where positive hydrodynamic pres-

sure generates force acting against the outer normal to the

solid surface, allows us to write

F ¼ �LP; (A13)

where L is a rectangular coupling matrix defined in compo-

nents as

LðK;jÞm ¼
ð

Sm

NKðxÞnjdS; (A14)

with the notation (K, j) indicating a map from node number

K and coordinate direction j to a degree of freedom number

(K, j); m is the pressure degree of freedom in the BEM, Sm is

the surface element m, and P is the vector of pressure values

on the surface panels.

Analogously, the mean normal velocity in the boundary

element model, piecewise constant along the surface panels,

can be expressed from the vector of the nodal velocities of

the scatterer finite element model as

Vn ¼ D�1LTV; (A15)

where D is a diagonal matrix of surface panel areas,

Dmm ¼
ð

Sm

dS; (A16)

so that, using the expression for the vector of nodal veloci-

ties, V ¼ �ixU,

Vn ¼ �ixD�1LTU: (A17)

Consequently, combining Eqs. (A17), (A5), (A13), and

(A11) yields

AP ¼ BVn þ Pinc

¼ �ixBD�1LTUþ Pinc

¼ ixBD�1LTð�x2MþKÞ�1
LPþ Pinc ; (A18)

or

A� ixBD�1LTð�x2MþKÞ�1
L

h i
P ¼ Pinc; (A19)

which may be solved for the panel values of total pressure P.

Having computed P, the normal velocity can be computed

from Eq. (A18),

Vn ¼ ixD�1LTð�x2MþKÞ�1
LP: (A20)
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