
vine.
isfying
em the
The
f
nerate
in
is

ncen-
a
sing a
ro on
ner
angles.
cting
tion of
reen’s
an be
rst few
rt any
ladel
. They
The eigenvalues of the Laplacian on a sphere
with boundary conditions specified on a segment
of a great circle
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We prove that the eigenvalues of the Laplacian on a sphere with a Dirichlet bound-
ary condition specified on a segment of a great circle lie between an integer and a
half-integer and for a Neumann boundary condition they lie between a half integer
and an integer. These eigenvalues correspond to the eigenvalues of the angular part
of the Laplacian with boundary conditions specified on a plane angular sector,
which are relevant in the calculation of scattering amplitude. These eigenvalues can
also be used to determine the behavior of the fields near the tip of a plane angular
sector as a function of the distance to the tip. The first few eigenvalues for both
Dirichlet and Neumann boundary conditions are calculated. The same eigenvalues
are also calculated using the Wentzel–Kramers–Brillouin~WKB! method. There is
excellent agreement between the exact and the WKB eigenvalues. ©1997 Ameri-
can Institute of Physics.@S0022-2488~97!00603-8#

I. INTRODUCTION

The problem of scattering of waves by an elliptic cone was first studied by Kraus and Le1

They introduced the sphero–conal coordinate system in which the wave equation, sat
boundary conditions on the surface of an elliptic cone, is separable. In this coordinate syst
wave equation separates into two angular Lame´ equations and the spherical Bessel equation.
solution of the wave equation for a plane angular sector~PAS! is a special case of the solution o
the wave equation for an elliptic cone, because, as is shown in Fig. 1, a PAS is a dege
elliptic cone. In the work by Kraus and Levine1 a formal expression for the Green’s function
terms of an eigenfunction expansion of the products of Lame´ and spherical Bessel functions
derived, but no numerical results are reported.

Since the work of Kraus and Levine other authors have studied this problem, mainly co
trating on the scattering from a PAS. Radlow2 studied the scattering of a plane wave from
quarter plane. He determined a two-variable integral representation of the field and then u
generalization of the Weiner–Hopf method, found a transformation that forces the field to ze
the quarter plane. Blume and Kirchner3 studied the singular behavior of the field near the cor
of a plane angular aperture and calculated the lowest eigenvalues for several different slot
Satterwhite4 investigated the scattering of electromagnetic waves from a perfectly condu
plane angular sector. He expressed the scattered electric field in terms of an integral equa
the products of the dyadic Green’s function and the surface current density. The dyadic G
function was found as sums of products of vector wave functions whose components c
expressed in terms of the solutions of scalar wave equations. Satterwhite calculated the fi
eigenvalues and eigenfunctions for the special case of a quarter plane, but did not repo
results for the solutions of the scattered electric and magnetic fields. De Smedt and Van B5

also studied the singular behavior of the electric and magnetic fields near the tip of a PAS
showed that the electric field is singular asr n21 and the magnetic field is singular asr t21, where
r is the distance to the tip of the sector. They calculated the lowest values forn and t using a

a!Present address: AETC Incorporated, 8910 University Center Lane, Suite 900, San Diego, CA 92122.
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1624 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
variational technique. These values ofn andt respectively correspond to the lowest Dirichlet a
Neumann eigenvalues discussed in this paper. Boersma6 used the Babinet’s principle to show th
the electric singularity exponent for a conducting PAS is identical to the magnetic singu
exponent for the complementary PAS.

In Sec. II, we use the results of Kraus and Levine1 to prove a theorem on the range of th
eigenvalues of a PAS; and another theorem to prove that for a Dirichlet boundary condition
eigenvalues lie between an integer and a half-integer and for a Neumann boundary conditio
lie between a half-integer and an integer. The first few eigenvalues for corner angles,b560°, 90°,
and 120°, are tabulated for both Dirichlet and Neumann boundary conditions. In Sec. II
Wentzel–Kramers–Brillouin~WKB! solution of this problem is outlined and the same eigenv
ues calculated by the WKB method are tabulated. The WKB eigenvalues which show rema
agreement with the exact eigenvalues, also exhibit the same properties as do the exact eige
namely those stated by the two theorems in this paper. The details of the WKB treatment, i
ing the calculation of the WKB eigenfunctions and normalization, is the topic of a subse
paper. A method for calculating the exact eigenfunctions is included in the Appendix.

II. THE EXACT SOLUTION OF THE WAVE EQUATION FOR A PLANE ANGULAR SECTOR

The sphero–conal variables (q,w,r ) are related to (x,y,z) by

x5r cosqA12k82 cos2 w,

y5r sin q sin w, ~1!

z5r coswA12k2 cos2 q,

wherek5cos~b/2! andk8 5 A12k2; the range of the variables are

0<q<p, 0<w<2p, r>0.

The construction of this coordinate system is described and its orthogonality proved in Ref.
geometry of the coordinate system may briefly be described as follows: The coordinater is the
distance to the origin, so the surfacer5r 1 is a sphere centered at the origin. The coordinateq5q1
is a semi-infinite elliptic cone whose cross section in a planex5constant is an ellipse centered o

FIG. 1. This figure shows an elliptic cone with apex at the origin, which in the spheroconal coordinate sys
represented byq5q0, whereq0 is the angle betweenOA and the positivex-axis. Forq05p the elliptic cone becomes
degenerate~the elliptic base collapses to its major axis,CD! resulting in the plane angular sector,COD, with corner angle
b. Note thatb50 corresponds to a needle andb5p corresponds to a half-plane.
J. Math. Phys., Vol. 38, No. 3, March 1997
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1625Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
the x-axis, with its major axis in the planey50. The surfacew5w1 is a semi-infinite elliptic
half-cone whose cross section in a planez5constant is half an ellipse centered on thez-axis with
its major axis in the planey50. The coordinate system defined by Eq.~1! reduces to the spherica
coordinate system whenk51. ForkÞ1 the coordinate surfacesq50 andq5p are plane angular
sectors in the planey50.

The wave equation in the sphero–conal coordinate system can be separated into a
equation1

d

dr S r 2 d

dr
RD1@k2r 22n~n11!#R50,

where the separation constant has been written asn~n11!, and an angular equation

DVV~q,w!1n~n11!V~q,w!50, ~2!

where the angular part of the Laplacian,DV , is given by

DV5
1

k2 sin2 q1k82 sin2 w HA12k2 cos2 q
]

]q SA12k2 cos2 q
]

]q D
1A12k82 cos2 w

]

]w SA12k82 cos2 w
]

]w D J .
Mathematically, specifying boundary con ditions on a plane angular sector is equivalent to
fying boundary conditions on a segment of a great circle of a sphere on whichDV operates, see
Fig. 2. If no boundary condition on the surface of the sphere is specified, the eigenvalues ofDV are
integers and they correspond to the free space eigenvalues. If boundary conditions are spec
a great circle which extends from the north to the south pole, the eigenvalues ofDV are half-
integers and they correspond to the eigenvalues ofDV for a half-plane. If, on the other hand
boundary conditions are specified along an arbitrary segment of a great circle, the eigen
correspond to the eigenvalues ofDV for a plane angular sector with corner angleb. By setting

FIG. 2. The segmentab along a great circle.
J. Math. Phys., Vol. 38, No. 3, March 1997
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1626 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
V~q,w!5Q~q!F~w!,

the angular part can be separated into

A12k2 cos2 q
d

dq FA12k2 cos2 q
d

dq
Q~q!G1@n~n11!k2 sin2 q1m#Q~q!50, ~3!

and

A12k82 cos2 w
d

dw FA12k82 cos2 w
d

dw
F~w!G1@n~n11!k82 sin2 w2m#F~w!50, ~4!

wherem is another separation constant. The radial equation is the spherical Bessel equati
Eqs.~3! and ~4! are the trigonometric Lame´ differential equations.

The solution of the Laplace equation satisfying Dirichlet or Neumann boundary conditio
the surface of a plane angular sector is of the form

C~q,w,r !5r pV~q,w!,

wherer is measured from the tip of the plane angular sector and the boundary surface,q5p, is
shown in Fig. 3. When substituted in the Laplace equation,

d

dr S r 2 d

dr DC~q,w,r !1DVC~q,w,r !50,

it gives

p~p11!2n~n11!50,

where in obtaining the above results Eq.~2! has been used. The solutions of the above equation
p5n, andp52n21. Near the tip of the plane angular sector~r small!, the physically possible
solution isp5n, ~n.0!, then

C~q,w,r !5r nV~q,w!,

FIG. 3. The plane angular sectorsq50, q5p; w50, w5p andw52p.
J. Math. Phys., Vol. 38, No. 3, March 1997



for a
to

angular

g

1627Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
which gives ther dependence of the potential near the tip of a plane angular sector. Thus,
given boundary condition, the values ofn, which depend on the corner angle, can be used
determine the behavior of the fields and surface charge densities near the tip of a plane
sector.

Eigenvalues of the exact solution. We take the boundary surface to be the sectorq5p. The
coordinate-imposed boundary condition onF~w! is that it must be periodic with period 2p F~w
12p!5F~w!, in order to ensure that it is single-valued. IfF~w! is even, i.e.,]F(w)/]wuw50

[ Fe8(0)5 0,we canwrite

Fe~w12p!5Fe~w!5Fe~2w!,

or

Fe8~w12p!52Fe8~2w!.

This implies

Fe8~p!50.

On the other hand, ifF~w! is odd,Fo(0)50 and

Fo~w12p!5Fo~w!52Fo~2w!,

which implies

Fo~p!50.

Thus for the even and odd periodic cases we must respectively have

Fe8~0!5Fe8~p!50,

and

Fo~0!5Fo~p!50.

The boundary conditions onQ~q! can be any of the following.
~1! The even Dirichlet boundary condition: In this caseQ~q! is even (Qe8(0) 5 0) and it

satisfies the Dirichlet boundary condition on the boundary surface (Qe(p)50). It has been shown
by Kraus and Levine1 that the factorsQ~q! andF~q! of the eigenfunctionV(q,w) can only be
both even or both odd. SinceQ~q! has been chosen to be even,F~w! must also be even resultin
in the following boundary conditions:

H Qe8~0!50, Qe~p!50,

Fe8~0!50, Fe8~p!50.
~5!

~2! The odd Neumann boundary condition: In this caseQ~q! is odd (Qo(0)50) and it
satisfies the Neumann boundary condition on the boundary surfaceQo8(p) 5 0. ThenF~w! must
also be odd resulting in the following boundary conditions:

H Qo~0!50, Qo8~p!50,

Fo~0!50, Fo~p!50.
~6!

~3! The odd Dirichlet and the even Neumann boundary conditions: By using the above
arguments, for the odd Dirichlet case we have
J. Math. Phys., Vol. 38, No. 3, March 1997
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1628 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
H Qo~0!50, Qo~p!50,

Fo~0!50, Fo~p!50.

By writing

Qo~q!5Q~q!2Q~2q!,

and imposing the boundary conditionQo(p)50, we find

Q~2p!5Q~p!. ~7!

Similarly, for the even Neumann boundary condition we have

H Qe8~0!50, Qe8~p!50,

Fe8~0!50, Fe8~p!50
.

In this case

Qe~q!5Q~q!1Q~2q!,

or

Qe8~q!5Q8~q!2Q8~2q!.

At the boundary surface the left-hand side of the second equation in the above vanishes, re
in

Q8~p!5Q8~2p!. ~8!

For the odd Dirichlet and the even Neumann boundary conditions bothF~w! and Q~q! are
periodic with period 2p which results in integer eigenvalues. Furthermore, Eqs.~7! and ~8!
suggest thatQ~q! is continuous across the boundary surface, which is the case when no bou
surface is present. The odd Dirichlet and even Neumann boundary conditions therefore
same as the free space boundary conditions. The first few eigenvalues ofDV satisfying the odd
Dirichlet, the even Neumann, and the half-plane boundary conditions on a PAS are tabula
the Appendix. In this paper we are only interested in the even Dirichlet and odd Neu
solutions, because these solutions correspond to the case when a boundary surface is prese
this point on we drop the ‘‘e’’ and ‘‘ o’’ subscripts and refer to the even Dirichlet and od
Neumann cases as the Dirichlet and Neumann cases, respectively.

The eigenvaluesn andm for the Dirichlet and Neumann boundary conditions are obtained
simultaneously solving Eqs.~3! and ~4! and imposing the appropriate boundary conditions giv
by Eqs.~5! and ~6!.

Theorem 1: For a given value ofn, m can only take values satisfying

n~n11!k82>m>2n~n11!k2.

Proof: Equation~3! can be written as

d

dq FA12k2 cos2 q
d

dq
Q~q!G52

n~n11!k2 sin2 q1m

A12k2 cos2 q
Q~q!.

Multiplying both sides of the above equation byQ~q! and integrating from 0 top gives
J. Math. Phys., Vol. 38, No. 3, March 1997
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E
0

p

Q~q!
d

dq FA12k2 cos2 q
d

dq
Q~q!Gdq52E

0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The left-hand side can be integrated by parts to yield

Q~q!
d

dq
Q~q!A12k2 cos2 qu0

p2E
0

pS d

dq
Q~q! D 2A12k2 cos2 qdq

52E
0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The first term is zero for all boundary conditions, so we are left with

E
0

pS d

dq
Q~q! D 2A12k2 cos2 qdq5E

0

p n~n11!k2 sin2 q1m

A12k2 cos2 q
Q2~q!dq.

The left-hand side of the above equation is positive, so we must have

n~n11!k2E
0

p sin2 qQ2~q!

A12k2 cos2 q
dq1mE

0

p Q2~q!

A12k2 cos2 q
dq>0.

Let

I 15E
0

p sin2 qQ2~q!

A12k2 cos2 q
dq,

and

I 25E
0

p Q2~q!

A12k2 cos2 q
dq,

then

n~n11!k2I 11mI 2>0⇒m>2
I 1
I 2

n~n11!k2.

Since

1>
I 1
I 2

>0,

the smallest possible value thatm can take is whenI 1/I 251, i.e.,

m>2n~n11!k2.

From Eq.~4! we get

E
0

pS d

dw
F~w! D 2A12k82 cos2 wdw5E

0

p n~n11!k82 sin2 w2m

A12k82 cos2 w
F2~w!dw,
J. Math. Phys., Vol. 38, No. 3, March 1997
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1630 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
which yields

n~n11!k82J12mJ2>0⇒m>
J1
J2

n~n11!k82,

whereJ1 andJ2 areI 1 andI 2 with k replaced byk8, q replaced byw, andQ~q! replaced byF~w!.
Here also

1>
J1
J2

>0,

we therefore get

m<n~n11!k82.

From the two relations form we can write

n~n11!k82>m>2n~n11!k2. ~9!

h

Theorem 2:For any non-negative integern, the eigenvalues ofDV with the Dirichlet bound-
ary condition specified on a PAS with corner angle 0,b,p ~segment of a great circle! satisfy:

n,n,n1 1
2,

and for the Neumann boundary condition they satisfy:

n1 1
2,n,n11.

Proof: The proof of this theorem is based on the fact that all positive integers are eigenv
of DV for the free space boundary condition and all positive half-integers are eigenvalues ofDV for
the half-plane boundary condition. The proof will be carried out in three parts. First, we us
variational principle on theQ equation@Eq. ~3!# to prove that the eigenvalue,n, corresponding to
Dirichlet boundary condition on a PAS is larger than some non-negative integerq. Then we use
the variational principle on theF equation@Eq. ~4!# to prove that this same eigenvalue is smal
thanq811/2, whereq8 is some other non-negative integer. Finally, we show thatq85q, com-
pleting the proof. Consider theQ andF equations,

d

dq
@A12k2 cos2 qQ8~q!#1

n~n11!k2 sin2 q1m

A12k2 cos2 q
Q~q!50, ~10!

d

dw
@A12k82 cos2w F8~w!#1

n~n11!k82 sin2 w2m

A12k82 cos2 w
F~w!50. ~11!

Equations~10! and ~11! are the Euler–Lagrange equations for the functionals

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq,

and
J. Math. Phys., Vol. 38, No. 3, March 1997
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1631Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw.

The eigenvalues of these equations,n~n11![a, are then the stationary values of the functiona7

@a#5

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq

E
0

p k2sin2 q

A12k2 cos2 q
Q2~q!dq

, ~12!

and

@a#5

E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw

E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw

, ~13!

whereQ andF satisfy some type of boundary conditions. The free space boundary conditi
the sphero–conal coordinate system are given by

Q8~0!50, Q8~p!50, F8~0!50, F8~p!50. ~14!

Note that the above boundary conditions also correspond to the even Neumann boundary
tion for a PAS. The Dirichlet boundary condition for a PAS is

Q8~0!50, Q~p!50, F8~0!50, F8~p!50, ~15!

and the Dirichlet boundary condition for a half-plane in the sphero–conal coordinate system~In
this case the half-plane is made up of two plane angular sectors,q5p andw5p, see Fig. 3!

Q8~0!50, Q~p!50, F8~0!50, F~p!50. ~16!

Recall that the solution of Eqs.~3! and ~4! subject to boundary conditions~14! or ~16!, respec-
tively, correspond to integer or half-integer values of the eigenvalue,n. By comparing the above
boundary conditions, we note that the boundary condition for a PAS can be obtained from th
space boundary condition by changing the boundary condition on theQ equation fromQ8~p!50
to Q~p!50, and leaving the boundary condition for theF equation unchanged. Similarly, th
boundary condition for a half-plane can be obtained from the boundary condition for a PA
changing the boundary condition on theF equation fromF8~p!50 to F~p!50, and leaving the
boundary condition for theQ equation unchanged. We can relate the free space boundary c
tion to the PAS boundary condition by defining a functionf in the following way:

Q8~0!50, Q8~p!52 f
Q~p!

k8
, F8~0!50, F8~p!50. ~17!

In this case the free space boundary condition corresponds tof50, and the PAS boundary
condition corresponds tof5`. The eigenvalues, in this case, are the stationary values o
functional
J. Math. Phys., Vol. 38, No. 3, March 1997
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1632 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
@a#5

E
0

pFA12k2 cos2 qQ82~q!2
m

A12k2 cos2 q
Q2~q!Gdq1 fQ2~p!

E
0

p k2 sin2 q

A12k2 cos2 q
Q2~q!dq

, ~18!

where the variationsdQ~0! anddQ~p! are unrestricted. Furthermore, we find

da

d f
5

Q2~p!

F E
0

p k2 sin2 q

A12k2 cos2 q
Q2~q!dq1

dm

daE0
p 1

A12k2 cos2 q
Q2~q!dqG .

In order to guarantee thatda/d f.0, it is sufficient thatdm/da be positive. From Eq.~13! we find
that

da

dm
5

E
0

p 1

A12k82 cos2 w
F2~w!dw

E
0

p k82 sin2~w!

A12k82 cos2 w
F2~w!dw

.0,

thusda/d f.0. This implies that asf increases from 0, which corresponds to free space boun
condition, to`, which corresponds to the boundary condition on a PAS, the corresponding e
value also increases. Here if the free space eigenvalue reached asf→0 has the valueq, we must
haven.q. This completes the first part of the proof.

Next we want to relate the PAS boundary condition to the half-plane boundary conditio
defining

Q8~0!50, Q~p!50, F8~0!50, F8~p!52g
F~p!

k
. ~19!

Now the PAS boundary condition corresponds tog50 and the half-plane boundary conditio
corresponds tog5`. The eigenvalues are then the stationary values of the functional

@a#5

E
0

pFA12k82 cos2 wF82~w!1
m

A12k82 cos2 w
F2~w!Gdw1gF2~p!

E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw

, ~20!

where now the variationdF~0!50, butdF~p! is unrestricted. We find

da

dg
5

F2~p!

F E
0

p k82 sin2 w

A12k82 cos2 w
F2~w!dw2

dm

da E
0

p 1

A12k82 cos2 w
F2~w!dwG .

dm/da must be negative to guarantee thatda/dg.0. From Eq.~12! we find that
J. Math. Phys., Vol. 38, No. 3, March 1997
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1633Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
da

dm
52

E
0

p 1

A12k2 cos2 q
Q2~q!dq

E
0

p k2 sin2~q!

A12k2 cos2 q
Q2~q!dq

,0,

thusda/dg.0. Asg increases from 0, which corresponds to the boundary condition on a PA
`, which corresponds to the boundary condition on a half-plane, the corresponding eigen
also increase. Here if the half-plane eigenvalue reached asg→` has the valueq811/2, we must
haven,q811/2. This completes the second part of the proof.

Finally, we must demonstrate thatq85q. Note that under the combined reversible flo
illustrated by Fig. 4:g going from ` to 0 and f going from ` to 0, we convert a Dirichlet
eigenfunction of the half-plane to one of the free-space problem, all the while reducing
eigenvalue fromq811/2 to q. Now the eigenfunction that starts atq850 must become that of

FIG. 4. This figure illustrates the eigenfunction flow discussed in the proof of Theorem 2.
J. Math. Phys., Vol. 38, No. 3, March 1997



of
In
s up to
w
r
at

s

of a
dary
iven by

ith

1634 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
q50, since there are no other eigenvalues of the free-space problem belown51/2. Next, the
eigenfunctions atq851 ~there are two such eigenvalues that are affected by the flow! must
become those ofq51 ~again there are two such! because there are no remaining eigenfunctions
the free space problem belown53/2 once theq50 mode has already been accounted for.
general then, the proof proceeds by induction. Assume we have accounted for all the mode
q821. The eigenfunctions atq8 ~there areq811 such eigenfuntions that are affected by the flo!
must flow to theq eigenfunctions~there areq11 such eigenfunctions!, since there are no othe
available modes withn,q811/2. Hence for allq8, q5q8. For the PAS problem, this proves th
q<n<q11/2, completing the proof. Therefore, we conclude that the eigenvalues ofDV with a
Dirichlet boundary condition specified on a PAS~segment of a great circle! lie between the free
space eigenvalues~integers! and the eigenvalues ofDV when the Dirichlet boundary condition i
specified on a half-plane~half-integers!, see Fig. 5:

n,n,n1 1
2.

h

The proof of this theorem for a Neumann boundary condition is very similar to that
Dirichlet boundary condition and it is briefly outlined in the following. The free space boun
condition in the sphero–conal coordinate system appropriate for the Neumann case are g

Q~0!50, Q~p!50, Q~0!50, F~p!50. ~21!

FIG. 5. This figure shows the location of the eigenvalues ofDV with boundary conditions on a plane angular sector w
corner angles, 60°, 90°, and 120°. For Dirichlet boundary condition the eigenvalues, in columns marked ‘‘D,’’ lie between
an integer and a half-integer, for Neumann boundary condition the eigenvalues, in columns marked ‘‘N,’’ lie between a
half-integer and an integer.
J. Math. Phys., Vol. 38, No. 3, March 1997
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1635Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
This boundary condition also corresponds to the odd Dirichlet boundary condition for a PAS
Neumann boundary condition for a PAS is

Q~0!50, Q8~p!50, F~0!50, F~p!50. ~22!

and the Neumann boundary condition for a half-plane is

Q~0!50, Q8~p!50, F~0!50, F8~p!50. ~23!

If we define the following set of boundary conditions for theF equation:

Q~0!50, Q8~p!50, F~0!50, F8~p!52 f
F~p!

k
,

then f50 will correspond to the half-plane boundary condition andf5` will correspond to the
PAS boundary condition. The eigenvalues are the stationary value of Eq.~20!. We have already
proven thatda/d f is positive. Thus for a non-negative integerq if the half-plane eigenvalue
reached asf→0 has the valueq11/2, we must haven.q11/2. Next if we define the following
set of boundary conditions for theQ equation:

Q~0!50, Q8~p!52g
Q~p!

k8
F~0!50, F~p!50,

theng50 corresponds to the PAS boundary condition andg5` corresponds to the free spac
boundary condition. The eigenvalues are the stationary values of Eq.~18!. In this case if the free
space eigenvalue reached asg→` has the valueq811, whereq8 is some other non-negativ
integer, then we must haven,q811. Again we must demonstrate thatq5q8. Here also under the
combined reversible flow: withf going from infinity to zero andg going from infinity to zero, we
convert a Neumann eigenfunction for the free space problem to one of the half-plane proble
the while reducing the eigenvalue fromq811 to q11/2, see Fig. 4. The eigenfunction that sta
at q850 must become that ofq50, since there is no eigenvalue of the half-plane belown51.
Next, the eigenfunctions atq851 ~there are two such eigenvalues that are affected by the fl!
must become those ofq51 ~again there are two such!, because there are no remaining eigenfu
tions of the half-plane problem belown52 once theq50 eigenfunction has already been a
counted for. This process can be continued until all the modes up toq821 have been accounte
for. At q8, the q8 eigenfunctions must flow to theq eigenfunctions, since there are no oth
available eigenfunctions of the half-plane problem withn,q811. Thus for allq8, we must have
q85q. Therefore, we have proven that the eigenvalues ofDV with the Neumann boundary con
dition specified on a PAS~segment of a great circle! lie between the eigenvalues ofDV for a
half-plane~half-integers! and the free space eigenvalues~integers!, see Fig. 5:

n1 1
2,n,n11.

h

III. THE WKB EIGENVALUES

In order to study the solutions of Eqs.~3! and ~4! for largen, it is convenient to transform
these equations to their Jacobian form.8 This is accomplished in two steps. First, we setq5g
2p/2, and then use the transformation

dg

dt
5A12k2 sin 2 g,
J. Math. Phys., Vol. 38, No. 3, March 1997
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1636 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
which transforms Eq.~3! to

d2Q

dt2
5~h2n~n11!k2 sn2~ t !!Q,

whereh5n(n11)k21m and sn is the Jacobian elliptic function. The above equation is of
general form

d2w

dx2
5q~x!w5$ f ~x!1g~x!%w. ~24!

For smallg/ f , this type of equation has approximate solutions of the form

w1,2~x!5 f21/4~x!expH 6E f 1/2~x!dxJ ,
in a given finite interval (a1 ,a2) provided thatf ~x! is a real, twice continuously differentiabl
function,g(x) a continuous real or complex function, and the error control function,F(x), defined
by

F~x!5E H 1

f 1/4
d2

dx2 S 1

f 1/4D2
g

f 1/2J dx,
in the absence of singularities, is bounded.9 The boundedness ofF guarantees that the approxima
solution is asymptotically correct for largef . If the differential equation has a regular singularit
ie, q(x) has a double pole, thenF(x) would be bounded only ifg(x) is chosen such that th
coefficient of its singular part is precisely21/4.9 The Jacobian elliptic function sn2(t) has a double
pole which is relatively close to the real axis. Therefore, we write

h2n~n11!k2 sn2~ t !5k2~n1 1
2!
2~12sn2~ t !!1m2

k2

4
~12sn2~ t !!,

and choose

f5k2~n1 1
2!
2~12sn2~ t !!1m

and

g52 1
4~12sn2~ t !!k2.

Note that the choice of the singular part ofg is rather arbitrary as long as it does not grow withn.
Transforming back, we find the solution9

Q~q!5
1

A4 ~n1 1
2!
2k2 sin2 q1m

cosH E
q0

qA~n1 1
2!
2k2 sin2 q1m

12k2 cos2 q
dq1dqJ , ~25!

and in a similar manner

F~w!5
1

A4 ~n1 1
2!
2k82 sin2 w2m

cosH E
w0

wA~n1 1
2!
2k82 sin2 w2m

12k82 cos2 w
dw1dwJ . ~26!
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For m.0, the turning point for theQ equation,q050, and the turning point for theF equation,

w05arcsinA m

k82~n1 1
2!
2
, ~27!

for m,0, w050 and

q05arcsinA 2m

k2~n1 1
2!
2
. ~28!

For smallg/ f , g can be neglected in Eq.~24! which when transformed back gives Eq.~3! with
n~n11! replaced by~n11/2!2. By using the transformation

v~q!5A4 12k2 cos2~q!Q~q!,

this latter equation can be converted to

d2

dq2 v~q!1p~q!v~q!50, ~29!

with

p~q!5
~n1 1

2!
2k2 sin2 q1m

~12k2 cos2 q!
. ~30!

By following the same procedure on theF equation we find

d2

dw2 u~w!1p~w!u~w!50, ~30!

where

u~w!5A4 12k82 cos2~w!F~w!, p~w!5
~n1 1

2!
2k82 sin2 w2m

~12k82 cos2 w!
.

By using the Liouville transformation,9

y~x!5S dxdq D 1/2v~q!,

Eq. ~29! can be transformed to

d2y

dx2
5H 2S dq

dx D
2

p~q!1S dq

dx D
1/2 d2

dx2 F S dq

dx D
21/2G J y .

The first term in the curly brackets can be set equal to any smooth function ofx,9 and for small
m/n the second term can be ignored. We thus set

S dq

dx D
2

p~q!5S x24 1aD , ~31!

giving
J. Math. Phys., Vol. 38, No. 3, March 1997
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d2y

dx2
1S x24 1aD y50,

which is the Weber equation. The parametera is determined from Eq.~31! by requiring that the
turning points of the Lame´ equation and the Weber equation occur at the same time thus ens
the regularity ofdq/dx at the turning points

E
0

q0Am1~n1 1
2!
2k2 sin2 q

12k2 cos2 q
dq5E

0

2iAaAa1
x2

4
dx. ~32!

In the above

q05sin21S iA m

~n11/2!2k2D .
Similarly, for theF equation we find

d2z

dx2
1S x242aD z50,

where now

z~x!5S dxdw D 1/2u~w! .

The phase factors,dq anddw , are determined by matching the WKB solutions, Eqs.~25! and~26!,
to the asymptotic solutions of the Weber equation.10 It is found that11

dw5
p

4
7
3p

8
1

f2~a!

2
7
1

2
D~a!2

a

2
lnuau1

a

2
,

ds5
p

4
7
3p

8
1

f2~2a!

2
6
1

2
D~a!1

a

2
lnuau2

a

2
,

where the upper signs are used for Dirichlet boundary condition, the lower signs are us
Neumann boundary condition and

D~a!5arctanF tanhS pa

2 D G ,
and

f2~a!5argG~ 1
21 ia !.

The parametera determined from Eq.~32! is given by

a5
2

p H ~n1 1
2!
2k822m

k8A~n1 1
2!
2k21m

H PS p

2
,

m

~n1 1
2!
2k82

,eD 2K~e!J J , ~33!

where
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e5
1

k8A m

~n1 1
2!
2k21m

, m.0,

andP is the elliptic integral of the third kind. Form,0 a can be determined from the abov
equation by replacingm by umu andk8 by k. A similar relationship as Eq.~32!, which also gives
Eq. ~33! for the parametera, also holds for theF equation which guarantees the regularity
dw/dx at the turning points. We find the set of eigenvalue equations11

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4!p, m50,1,...

~34!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,...

for the Dirichlet boundary condition and

Jw1f2~a!1D~a!2a lnuau1a5~m1 3
4!p, m50,1,...

~35!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,...

for the Neumann boundary condition, where

Jq5E
q0

p2q0A~n1 1
2!
2k2 sin2 q1m

12k2 cos2 q
dq,

and

Jw5E
w0

p2w0A~n1 1
2!
2k82 sin2 w2m

12k82 cos2 w
dw,

can be expressed in terms of elliptic mtegrals,12

Jq5
2m

k8A~n1 1
2!
2k21m

H PS p

2
,

~n1 1
2!
2k2

~n1 1
2!
2k21m

,r1D J ,
and

Jw5
2m

k8A~n1 1
2!
2k21m

H PS p

2
,
~n1 1

2!
2k822m

~n1 1
2!
2k82

,r1D 2K~r1!J ,
for m.0 and

Jq5
22m

kA~n1 1
2!
2k822m

H PS p

2
,
~n1 1

2!
2k21m

~n1 1
2!
2k2

,r2D 2K~r2!J ,
and

Jw5
22m

kA~n1 1
2!
2k822m

H PS p

2
,

~n1 1
2!
2k82

~n1 1
2!
2k822m

,r2D J ,
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for m,0. In the above

r15
k

k8
A~n1 1

2!
2k822m

~n1 1
2!
2k21m

,

r25
k8

k A ~n1 1
2!
2k21m

~n1 1
2!
2k822m

,

andK is the elliptic integral of the first kind. Using relations between elliptic integrals,13 we find
from the above equations

Jq1Jw5~n1 1
2!p. ~36!

For the free space boundary condition, Eq.~21!, we find the set of eigenvalue equations

Jw1f2~a!2D~a!2a lnuau1a5~m1 1
4!p, m50,1,... ,

~37!
Jq2f2~a!1D~a!1a lnuau2a5~n1 1

4!p, n50,1,... .

Similarly, for both Dirichlet and Neumann boundary conditions, Eqs.~16! and ~23!, on a half-
plane we find the set of eigenvalue equations

Jw1f2~a!2a lnuau1a5~m1 1
2!p, m50,1,... ,

~38!
Jq2f2~a!1a lnuau2a5~n1 1

2!p, n50,1,... .

By adding the eigenvalue equations for the Dirichlet boundary condition, Eq.~34!, and using Eq.
~36!, we obtain

n5m1n1
1

4
1
D~a!

p
, ~39!

and by adding the eigenvalue equations for the Neumann boundary condition, Eq.~35!, we find

n5m1n1
3

4
2
D~a!

p
. ~40!

Similarly, for the free space boundary condition, Eq.~37!, we find

n5m1n,

and for the half-plane boundary condition, Eq.~38!, we find

n5m1n1 1
2.

From the last two equations it can be seen that the WKB eigenvalue equations, Eq.~37!, for free
space boundary condition, and Eq.~38! for half-plane boundary condition, give the eigenvaluesn,
exactly: that is, the eigenvalues for the free space boundary condition calculated from Eq.~37! are
exactly integers and the eigenvalues for half-plane boundary condition calculated from Eq~38!
are exactly half-integers. Furthermore, since

uD~a!u,
p

4
,
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from Eqs.~39! and ~40! we find for the Dirichlet boundary condition

m1n,n,m1n1 1
2,

and for the Neumann boundary condition

m1n1 1
2,n,m1n11,

in agreement with the results of theorem 2.

Limiting cases. Small a/n. For smalla/n, Jq andJw can be approximated by11

Jq52~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2a lnuau1a1O~a2!,

~41!

Jw52~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1a lnuau2a1O~a2!,

where

a5
2k8a

kAn~n11!
.

To this approximation the set of eigenvalue equations for the Dirichlet boundary condition
plane angular sector, Eq.~34!, becomes

2~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1f2~a!2D~a!5~m1 1

4!p, m50,1,... ,

2~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2f2~a!5~n1 1

2!p, n50,1,... .

By subtracting the above two equations we find

TABLE I. Exact and WKB eigenvalues, Dirichlet boundary condition,b560°.

Exact eigenvalues WKB eigenvalues

n m n m

0.240 100 0.036 081 0.250 000 0.000 000
1.061 291 20.738 682 1.056 152 20.739 774
1.347 988 0.404 089 1.352 332 0.353 598
2.007 534 22.798 184 2.005 562 22.795 198
2.151 363 20.448 877 2.152 149 20.480 823
2.421 224 1.148 104 2.420 612 1.101 099
3.000 689 26.411 688 3.000 415 26.410 392
3.034 598 22.299 160 3.031 866 22.237 473
3.247 569 0.046 190 3.250 000 0.000 000
3.464 345 2.349 962 3.461 728 2.308 129
4.000 057 211.542 236 4.000 029 211.540 810
4.004 708 25.536 257 4.003 667 25.541 524
4.088 336 21.575 254 4.087 239 21.604 552
4.335 547 0.816 227 4.336 819 0.766 347
4.485 458 4.058 339 4.482 941 4.018 364
J. Math. Phys., Vol. 38, No. 3, March 1997



plane

1642 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
2~n1 1
2!S p

2
2b D12a ln@8kk8~n1 1

2!#22f2~a!1D~a!5~n2m1 1
4!p.

Substituting for~n11
2! from Eq. ~39!, gives

2Sm1n1
3

4
1
D~a!

p D S p

2
2b D12a lnF8kk8Sm1n1

3

4
1
D~a!

p D G22f2~a!1D~a!

5~n2m1 1
4!p. ~42!

In the same limit the set of eigenvalue equations for the Neumann boundary condition on a
angular sector, Eq.~35!, becomes

TABLE II. Exact and WKB eigenvalues, Dirichlet boundary condition,b590°.

Exact eigenvalues WKB eigenvalues

n m n m

0.296 584 0.089 456 0.299 781 0.080 958
1.131 248 20.452 788 1.129 190 20.438 011
1.426 512 0.917 647 1.427 775 0.899 504
2.039 575 21.702 414 2.039 422 21.684 193
2.287 571 0.216 125 2.287 856 0.213 095
2.480 880 2.667 648 2.487 856 2.648 919
3.009 062 23.937 847 3.009 528 23.919 378
3.146 403 20.825 595 3.146 022 20.818 730
3.408 679 1.533 190 3.408 992 1.523 359
3.495 891 5.437 690 3.495 505 5.417 830
4.001 846 27.207 836 4.002 111 27.187 871
4.053 806 22.576 195 4.053 724 22.565 033
4.284 205 0.332 446 4.284 291 0.330 690
4.470 929 3.789 494 4.470 831 3.777 082
4.499 185 9.222 705 4.499 019 9.201 634

TABLE III. Exact and WKB eigenvalues, Dirichlet boundary condition,b5120°.

Exact eigenvalues WKB eigenvalues

n m n m

0.356 355 0.158 119 0.358 126 0.174 722
1.226 096 20.134 016 1.219 684 20.090 849
1.476 873 1.536 303 1.480 990 1.538 258
2.123 472 20.708 205 2.121 581 20.659 142
2.417 310 1.067 192 2.419 379 1.087 689
2.497 681 4.406 617 2.498 460 4.406 798
3.057 603 21.678 866 3.059 474 21.634 478
3.327 410 0.488 369 3.326 217 0.525 600
3.486 757 3.648 295 3.488 577 3.657 995
3.499 779 8.787 899 3.499 890 8.787 049
4.023 832 23.134 253 4.026 620 23.093 377
4.227 428 20.248 489 4.225 340 20.202 646
4.456 604 2.761 217 4.458 635 2.781 612
4.498 416 7.777 962 4.498 879 7.784 635
4.499 983 14.671 188 4.499 992 14.669 535
J. Math. Phys., Vol. 38, No. 3, March 1997



1643Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
2~n1 1
2!S b

2 D2a ln@8kk8~n1 1
2!#1f2~a!1D~a!5~m1 3

4!p, m50,1,... ,

2~n1 1
2!S p

2
2

b

2 D1a ln@8kk8~n1 1
2!#2f2~a!5~n1 1

2!p, n50,1,... .

By subtracting these two equations and using Eq.~40!, we find

2Sm1n1
5

4
2
D~a!

p D S p

2
2b D12a lnF8kk8Sm1n1

5

4
2
D~a!

p D G22f2~a!2D~a!

5~n2m2 1
4!p. ~43!

TABLE IV. Exact and WKB eigenvalues, Dirichlet boundary condition,b560°.

Exact eigenvalues WKB eigenvalues

n m n m

0.919 039 20.544 092 0.925 416 20.562 905
1.756 877 0.031 801 1.750 000 0.000 000
1.992 189 22.755 471 1.994 275 22.762 736
2.612 874 0.907 904 2.611 660 0.862 343
2.960 147 22.039 005 2.963 345 22.059 364
2.999 308 26.405 726 2.999 584 26.406 754
3.542 794 2.211 193 3.545 553 2.160 504
3.880 762 21.101 735 3.881 148 21.131 761
3.995 194 25.498 138 3.996 269 25.510 924
3.999 942 211.541 571 3.999 971 211.540 469
4.515 746 3.988 468 4.518 469 3.936 896
4.752 602 0.035 213 4.750 000 0.000 000
4.980 945 24.388 250 4.982 818 24.410 636
4.999 484 210.408 995 4.999 669 210.415 666
4.999 995 218.175 462 4.999 998 218.173 528

TABLE V. Exact and WKB eigenvalues, Dirichlet boundary condition,b590°.

Exact eigenvalues WKB eigenvalues

n m n m

0.814 655 20.189 507 0.817 541 20.183 573
1.597 131 0.795 774 1.595 459 0.782 870
1.955 326 21.552 890 1.955 664 21.535 754
2.520 877 2.621 752 2.521 225 2.602 671
2.801 149 20.349 178 2.801 527 20.346 344
2.990 672 23.886 619 2.990 191 23.865 543
3.504 197 5.424 529 3.504 590 5.403 516
3.617 052 1.261 783 3.616 648 1.254 866
3.938 056 22.308 190 3.938 212 22.297 999
3.998 143 27.193 804 3.997 875 27.171 821
4.500 819 9.219 426 4.500 985 9.197 701
4.532 032 3.680 927 4.532 113 3.668 644
4.795 768 20.494 774 4.795 892 20.492 960
4.984 161 25.230 456 4.983 978 25.216 220
4.999 642 211.499 924 4.999 545 211.467 714
J. Math. Phys., Vol. 38, No. 3, March 1997
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1644 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector
We note that Eqs.~42! and~43! are independent ofn. This allows us to solve these equations f
a by performing a search in one dimension~as opposed to two dimensions when we need to fi
n as well! and then use Eqs.~39! and ~40! to determinen.

Large a.As a→`, D(a)→p/41O(e2pa) and asa→2`, D(a)→2p/41O(e2puau). By
substituting these limiting values ofD(a) in the eigenvalue equations, Eqs.~34!, ~35!, ~37!, and
~38!, we find that asa→` ~m positive!, Eqs.~34! and~35! reduce to Eq.~38!, and asa→2` ~m
negative!, Eqs. ~34! and ~35! reduce to Eq.~37!. We already pointed out that the values ofn
calculated from Eq.~38! are half-integers and those calculated from Eq.~37! are integers. This
shows that for large positive values ofa the eigenvalues,n, approach half-integers and for larg
negative values ofa they approach integers. This can be seen in Fig. 5 and Tables I–VI.

IV. NUMERICAL CALCULATION OF THE EIGENVALUES

The eigenvalues,~n,m!, must be calculated by simultaneously requiring that theF~w! solution
is periodic with period 2p and theQ~q! solution satisfies the boundary conditions. To do this,
used the following method: start with an initialn, then use the shooting method14 to find mq for
Eq. ~3! andmw from Eq.~4!. Vary n and find a new pair of~mq ,mw!. If the difference betweenmq

andmw increases, varyn in the opposite direction and find another pair of~mq ,mw!. Continue the
process until the difference betweenmq andmw is small to a desirable limit. By using this metho
we are able to findn and m accurate up to six decimal places. The WKB eigenvalues w
calculated by applying the Newton–Raphson iteration to the set of equations given by Eqs~34!
and~35!. Reference 14 has efficient routines for the calculation of elliptic integrals. These rou
have been used in the WKB calculation of eigenvalues. For large values ofn and small values of
a/n, as was pointed out earlier, one does not need to solve the above set of the eige
equations. Instead, for the Dirichlet boundary conditiona can be determined from Eq.~42! and
then Eq.~39! can be used to calculaten; for the Neumann boundary conditiona can be determmed
from Eq.~43! andn can be calculated from Eq.~40!. It should be pointed out that in the Newton
Raphson iteration using Eqs.~34! and ~35! the derivatives are respectively calculated from th
approximate form for smalla/n @Eqs.~42! and~43!#. It is much easier to calculate derivatives
the latter equations, yet the convergence rate is equally good. Tables I–VI list the eigenvalu
Dirichlet and Neumann boundary conditions on a plane angular sector with corner angles o
90°, and 120°.

TABLE VI. Exact and WKB eigenvalues, Dirichlet boundary condition,b5120°.

Exact eigenvalues WKB eigenvalues

n m n m

0.697 484 0.070 303 0.704 000 0.097 292
1.525 224 1.515 624 1.520 686 1.521 887
1.849 263 20.498 577 1.853 450 20.454 970
2.502 344 4.403 471 2.501 552 4.404 736
2.598 523 0.963 024 2.596 927 0.988 145
2.935 993 21.528 545 2.934 267 21.479 765
3.500 201 8.787 553 3.500 110 8.786 850
3.513 954 3.625 169 3.511 853 3.638 428
3.715 734 0.196 581 3.718 263 0.233 427
3.975 043 22.930 602 3.972 115 22.998 640
4.500 016 14.671 153 4.500 008 14.669 517
4.501 592 7.774 668 4.501 125 7.782 170
4.547 584 2.673 862 4.545 440 2.697 962
4.834 680 20.881 895 4.836 155 20.838 295
4.990 638 24.876 280 4.988 412 25.011 801
J. Math. Phys., Vol. 38, No. 3, March 1997
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APPENDIX A: SPECIAL EIGENVALUES

Although, as pointed out in the text, the eigenvalues ofDV subject to the even Neumann an
odd Dirichlet boundary conditions are of no mterest in this paper, for completeness we ta
these eigenvalues for a 90° PAS along with the eigenvalues ofDV for a half-plane in Table VII.
Note that the eigenvalues for the odd Dirichlet and even Neumann cases are all integers an
for the half-plane are half-integers. It should be pointed out that both odd Dirichlet and
Neumann boundary conditions on a half-plane result in the same set of eigenvalues.

APPENDIX B: THE EXACT EIGENFUNCTIONS

1. The even Dirichlet case

a. The Q equation

According to Refs. 8 and 4, the solution of Eq.~3! subject to the boundary conditions

Q~p!50 Dirichlet boundary condition

Q8~0!50 even solution

is given by the series

Qe~q!5 (
m50

`

Am cos~2m2 1
2!q.

Substituting the above series in Eq.~3! results in the recurrence relation

Am21am1Ambm1Am11gm50, ~B1!

where

am5
k2

4 F ~4m23!~4m25!

4
2n~n11!G ,

TABLE VII. Special eigenvalues ofDV for a 90° PAS and a half-plane.

Even Neumann Odd Dirichlet Half-plane

n m n m n m

0.000 000 0.000 000 1.000 000 0.000 000 0.500 000 0.000 000
1.000 000 20.500 000 2.000 000 21.500 000 1.500 00020.866 025
1.000 000 0.500 000 2.000 000 1.500 000 1.500 000 0.866 025
2.000 000 21.732 051 3.000 000 23.872 984 2.500 00022.645 751
2.000 000 0.000 000 3.000 000 0.000 000 2.500 000 0.000 000
2.000 000 1.732 051 3.000 000 3.872 984 2.500 000 2.645 751
3.000 000 23.949 490 4.000 000 27.190 416 3.500 00025.431 181
3.000 000 20.949 490 4.000 000 22.190 416 3.500 00021.415 017
3.000 000 0.949 490 4.000 000 2.190 416 3.500 000 1.415 017
3.000 000 3.949 490 4.000 000 7.190 416 3.500 000 5.431 181
4.000 000 27.211 103 5.000 000211.489 126 4.500 00029.221 070
4.000 000 22.645 752 5.000 000 25.196 152 4.500 00023.737 893
4.000 000 0.000 000 5.000 000 0.000 000 4.500 000 0.000 000
4.000 000 2.645 752 5.000 000 5.196 152 4.500 000 3.737 893
4.000 000 7.211 103 5.000 000 11.489 126 4.500 000 9.221 070
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bm5F ~4m21!2

4 S k2

2
21D1

n~n11!k2

2
1m G ,

gm5
k2

4 F ~4m11!~4m13!

4
2n~n11!G .

The above is a three term recurrence relation which by a rather straightforward manipulatio
be written in the form of a continued fraction

Am21

Am
52

bm

am
1

gm

am

bm11

am11
1

gm11

am11

bm12

am12
1•••

, ~B2!

or

Am11

Am
52

bm

gm
1

am

gm

bm21

gm21
1

am21

gm21

bm22

gm22
1•••

. ~B3!

The above continued fractions converge rather fast, so approximately 20 terms are eno
achieve an accuracy of up to eight decimal places. Following Ref. 4,A11 is assumed to be unity
and Eq.~B2! is used to calculateA0 . ThenA211 is assumed to be unity and Eq.~B3! is used to
calculateA0 again. TheA0 found by starting atA211 is set equal to theA0 calculated the first time
and Eq.~B3! is used to scaleA21 throughA210. Finally, all the coefficients are normalized t
make

Qe~0!51.

b. The F equation

The two independent solutions of Eq.~4! satisfying the even boundary conditions

F8~0!50, F8~p!50

are given by

Fe1~w!5 (
m50

`

B2m cos 2mw,

and

Fe2~w!5 (
m50

`

B2m11 cos~2m11!w.

The recurrence relations for the first solution are
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B0S n~n11!k82

2
2m D1B2

k82

4
~22n~n11!!50 ,

B0S 2n~n11!k82

2 D1B2S 4S k82

2
21D1

n~n11!k82

2
2m D1B4

k82

4
~122n~n11!!50,

and

B2m22a2m1B2mb2m1B2m12g2m50, m>2.

The recurrence relation for the second solution is

B2m21a2m111B2m11b2m111B2m13g2m1150, m>1,

where

a2m5
k82

4
@~2m22!~2m21!2n~n11!#,

b2m5F ~2m!2S k82

2
21D1

n~n11!k82

2
2mG , ~B4!

g2m5
k82

4
@~2m12!~2m11!2n~n11!#.

The continued fraction for the first solution is

B2m22

B2m
52

b2m

a2m
1

g2m

a2m

b2m12

a2m12
1

g2m12

a2m12

b2m14

a2m14
1•••

, m>2, ~B5!

and for the second solution is

B2m21

B2m11
52

b2m11

a2m11
1

g2m11

a2m11

b2m13

a2m13
1

g2m13

a2m13

b2m15

a2m15
1•••

. ~B6!

It was decided that it would be accurate enough to assumeB42 to be unity and use Eq.~B5! along
with the first two recurrence relations to findB40 throughB0. Similarly,B41 is assumed to be unity
and Eq.~B6! is used to determineB39 throughB1. The coefficients are then normalized to ma

Fe~0!51.
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2. The odd Neumann case

a. The Q equation

The solution of Eq.~3! subject to the boundary conditions

Q8~p!50 Neumann Boundary condition

Q~0!50 odd solution

is

Qo~q!5 (
m50

`

Am sin~2m2 1
2!q.

The recurrence relation and the expression for the continued fraction for this equation are th
as for the Dirichlet case@Eqs. ~B1!, ~B2!, ~B3!#. The coefficients are determined in the sam
manner, except that now they are normalized to make

Qo8~0!51.

b. The F equation

The two independent solutions of Eq.~4! satisfying the odd boundary conditions

F~0!50, F~p!50

are given by

Fo1~w!5 (
m50

`

B2m sin 2mw,

and

Fo2~w!5 (
m50

`

B2m11 sin~2m11!w .

The recurrence relation for the first solution is

B2m22a2m1B2mb2m1B2m12g2m50, B050

and for the second solution is

B1S S k82

2
21D1

3n~n11!k82

4
2m D1B3

k82

4
~62n~n11!!50,

B2m21a2m111B2m11b2m111B2m13g2m1150, m>1,

wherea2m, b2m andg2m are given by Eq.~B4! and the continued fractions are given by Eqs.~B5!,
and~B6!. The coefficients are determined in the same way as the coefficients for the Dirichle
and then they are normalized to make

Fo8~0!51 .
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