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Abstract

We show that the Fokker-Planck equation can be applied to noisy sine-Gordon systems,
either through reduction to soliton parameter or by the techniques of functional analysis.
We also suggest approaches to introducing noise in the auxiliary Faddeev-Takhtadzhyan

scattering equations.

I. Introduction

As the size of a physical system decreases the dependence of its transport characteristics
on nonlocal and nonlinear phenomena becomes more pronounced. For example, although the
electrical characteristics of a transistor may be determined by microscopic structure within a
few measurements of bulk properties, electron correlations in the plane of the interface amplify
fluctuations. Furthermore, self-field effects can produce strong nonlinearities. One example of
these is exciton transport in molecular crystals. Both the field-like nature of the fluctuations
and the nonlinear interaction between electromagnetic fields and charge transport may pose
difficult problems in description and analysis of the dynamics of the system.

II. Relations Between the Physics of the Long Josephson Junction
and the Mathematics of the sine-Gordon Equation

The effects of perturbations on the dynamics of nonlinear extended systems may be under-
“stood in the context of some actual structures in which the electrical behavior is accurately
given by a simple description. One such system is the Josephson transmission line in which the
dynamics are described by a perturbed sine-Gordon equation{!-?). Although the sine-Gordon
equation is deceptively simple the mathematical structure of its solution space is very rich(?=71.

The electron phase difference across a one-dimensional Josephson junction may be de-
scribed by a sine-Gordon equation in the phase, ¢(z, t), with additional nonzero terms for
dissipation and driving currentl]:

Pzz — bt — 51n(¢) =ad —7. (1)
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In this equation the driving term ¥ may be written as the sum of applied current 5(z, t)
and noise £(z, t). Because a real junction is of finite length L, boundary conditions must be
specified. There are generally three types:

1). Periodic e¥(*) = ¢i¥(z+0),

2). Reflective ¢:(0) = ¢:(L) = C;

3) Free ¢:(0) = ¢z:(0) ) 0:([4) = ¢=-‘»(L)

Condition 1) arises in an annular junction system (8] condition 2) arises when magnetic
flux is assumed to be confined to the junction!®l, and condition 3) arises from a lumped circuit

equivalent of the devicel®l. Generally, because a field radiates from the end of an oscillating
junction the actual boundary condition is intermediate between 2) and 3){!}.

< The solutions of the sine-Gordon equation (right-hand side of Eq. (1) set to zero) on the
infinite line may be written in terms of solitary waves or solitons. These soliton solutions carry
over to the perturbed sine-Gordon equation [Eq. (1)] on a finite interval [conditions 2) and 3)]
if the perturbation is small and the interval is long enough. Furthermore, the soliton solutions
of the sine-Gordon equation correspond, in a long Josephson junction to discrete packets of
magnetic flux (fluxons) which propagating along the junction. Because dissipation terms in
a long Josephson junction are generally small in magnitude, many of the most interesting
properties of freely propagating fluxons far from boundaries are derived from the properties of
soliton solutions of the pure sine-Gordon equation. These packets, induced by minute current
vortices, behave like solitons and exhibit the same particle-like properties(!:3l, The literature
associated with the pure sine-Gordon equation is quite extensive and generally treats the
case of the sine-Gordon equation with either periodic boundary conditions or distribution-
like conditions on the infinite line, (¢;, ¢ — 0 as z — +o0). Solutions of the pure sine-
Gordon equation may be found by separation of space and time variables!®). Generalizations
of this technique yield multisoliton solutions which may be expressed in terms of the Jacobi
theta functions and the Riemann-theta functionsl4~®l. Solutions for the sine-Gordon equation
generalized to two or more spatial dimensions are also given in terms of the Riemann theta
function!¥. The main approach to derivation of multisoliton is through inverse scattering
theory(3=7].

Numerical modeling experiments demonstrate the solitary wave properties of fluxon solu-
tions of Eq. (1). Furthermore, numerical techniques show that driving currents and boundary
conditions may exhibit quite complex interactions; in fact boundary conditions may consti-
tute a much stronger perturbation on the solutions of the pure sine-Gordon system than do
dissipation or driving currents(®].

IOI. Effects of Noise

We can assume that a system described by a finite number of variables, q;, -+ -, qa, °
dynamics as given by the Langevin equations

@ = fulq, -, an) + L&)

where the first term on the right-hand side gives the unperturbed dynamics.
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specifies the effects of the Gaussian noise processes
&(t), (&(1) =0

and
(&()6e(0)) = 8 (2) .

This equation may be applied to a spatially distributed system by reduction to a finite di-
mensional system. One particular technique is the finite element method. In our case we are
interested in the finite dimensional description of the solutions of the dynamical equations

given by phase and velocity of the solitons.

If the f, in Eq. (2) is sufficiently differentiable and there is a probability distribution P
on the phase space satisfying Chapman-Kolomogorov conditions then P satisfies the Fokker-
Planck equation(10:11]

OP(g,t) _(_ 0 1_&
e R ZORE S el 0] S 3)

where

= 199, .
K,(9) = fi(g) + 3 3q, 9, (9)bik

Quu =‘9.",g:5.'b .
We may apply this equation to perturbation of the motion of a single fluxon in the Josephson

transmission line because the perturbation theory reduces Eq. (1) to a system of two ordinary
differential equations. According to McLaughlin and Scott(®!

&= {-(f)-i-f)(l—uz)s“—au(l—uz), X=u, (4)

where u is the fluxon velocity, X is the phase, n and £ are as above, n = cost.
We study the momentum ¢, which is defined by

8
= (1_':‘2)1/2 : (5)

Making use of Eq. (2) and adding noise £(t) obtain the Langevin equation

%% = f(q) + 9(q)é(t)

fl@) =2an—-0aq, g(q)=27.

(6)

The associated Fokker-Planck equation is

aP(qlm!t)_. . d m dZ
= = [ K@ - 5Qg5] P m ),

where K = f(g), Q = 1, and m is a parameter indicating the intensity of the noise (¢
associated Hamiltonian is

H(p, q) = K(g)p+ %Qp’ :
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We obtain the following results: 1). the Hamiltonian system associated to Eq. (8) is completely
integrable; 2). in the time-independent steady state, the weak noise limit of solution to Eq. (7)

is of the following form:

Pla, m) = N(m)Z(g)exp [~ =] ©
where 2
I= (=277 + aq) ’
0= ()"

and N(m) = 1; and 3). the time-dependent probability distribution of soliton velocity is given
by the formula

— u2)3/2
P(u, m, t) = (i._s_)___
(2 9; (10)
x [43(R) + S go(R)(- 1)141{,, (/) exp (- 2 m2 - 2]
J=1
with . 54 .

(I=u?)i/? ~ (1=u2,)72’
¢o being the txm&mdependent solution, ue, the stationary velocity and H; the j-th Hermitian
polynomial.

It is shown in Refs. [13] and [14] that equation (7) is the precise solution in the time-
independent steady state and that the power series expansion (10) can be analytically calcu-
lated. With respect to expansion, five kinds of points in variable space, i.e., hyperbolic stable
and unstable points, saddles, bifurcation singular points, regular points, and singular points
of higher orders, are distinguished.

The exact (functional) form of the Fokker-Planck equation is also available to treat Eq. (1)
directly. Assuming for a given noise process £, a probability distribution P¢(é, &4, t) on the
space of solutions for Eq. (1), we can write a conservation equation for the functional P; as

follows:
aP 5
5,
Proceeding formally, as in Graham[nl
to
Pe($, 61, 1) = [exp / dr (0, + a,)] Pe(9, 61, 0) (12)

where #; and 8, are the functional operators

)
_‘/ﬁ-dn.iz and 3;5—""‘1:

respectively. Expanding, and performing the ensemble average over noise processe
obtain the functional equation:

5 = -{/dz6¢K1 +,/dz6¢,}‘°+ 2{/ dndzzwuvaw}P
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IV. Further Generalization

Faddeev and his coworkers{”l have derived the inverse scattering equations associated with
the pure sine-Gordon equation, and used them to obtain explicit solutions in terms of action-
angle variables. The most general form of the associated linear equations is as follows:

0 1 d i 01 1 ety 0 _ h _
[(—1 o)ﬁ*lw(l o)*rs‘,\'( 0 c—iu) "}(%)—0, (14)

0 1 d i 01 1 R 0 " _
[(-1 O>E+Zw(1 o)"ﬂﬁ( 0 ,-m)‘f‘](%)—O. (15)

where ) is the eigenvalue and (Y1, ¥;) is the eigenfunction(®~3!. The consistency of these two
linear equations implies that

U +us =w, we — we =sinu, (16)

i.e., u satisfies the pure sine-Gordon equation. Forest and his coworkers(®6] have used these
equations to study the perturbed sine-Gordon equation with periodic boundary conditions. If
we rewrite the linear equations

dyy i 1 .
el AR ——e U Ay =
@t +4“"”‘+(16,\° + )‘1” 0, an
L B +(—}—e‘“+/\)w =0
at "4 27 \16A L=

etc. Then we see that the linear equations appear as generalized two-level equations. This
suggests an approach to noise and fluctuations via inverse scattering theory.

If we make the ansatz
\bl' = p}/zc-"éi )

where p; is regarded as a number density and ¢; as a phase then we obtain eight coupled
equations in number density and phase from Eq. (17). Writing the time equations for phase
explicitly

d$y w P2\ . . Pa

ey + Kl,n(p—l) sin(é2 — ¢1) - Ky, ¢ (Z) cos(¢2 — ¢1) =0, (18)
we see that fluctuations may be introduced into the system via fluctuations in number densities.
This gives a means to measure departures from pure sine-Gordon dynamics within a functional
framework consistent with inverse scattering theory. The essential step is to note that both
the Faddeev-Takhtadzhyan inverse scattering equations and Landau-Ginzberg equations for
.an extended Josephson junction arise from functional equations{!?l. :

d §
iha\bi = mFT(Kbx, Y2 4), (19)

where Fr is an expression for free energy and A is the electromagnetic field inside the junction.
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