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When two layers expand unequally, but are bonded together, there is a natural tendency
for the composite to bend. In this report this problem is addressed in two parts. In the first
part we consider the bending of two layers which are bonded together such that there is no
slip at the interface. In the second part we consider the same problem when the bonding
material allows movement at the interface. The following references are used in this work
[1],[2],[3] and [4].

I Bending of two bonded layers with no slip at the

interface

In this analysis it is assumed that the two layers behave like beams capable of axial and
bending deformations, and there is no slip at the interface. A typical configuration is shown
below where, t, E, and α are the thickness, Young’s modulus and the coefficient of thermal
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Figure 1: Two bonded layers with different elastic properties.

expansion, respectively. If α2 > α1, an increase in temperature causes the bottom layer to
stretch more than the top layer. Because the two layers can not move with respect to each
other at the interface, the whole structure will bend as shown in Fig.(2) The equilibrium of
forces yields

P1 = P2 (1)
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Figure 2: Bonded layers with different elastic properties tend to bend due different responses
to temperature.

let P1 = P2 = P. The equilibrium of moments yields

P
h

2
= M1 +M2 (2)

Referring to Fig.(3), the strain due to bending is

γ =
∆l

l
=
l + ∆l − l

l
=

2π(R + ∆R) − 2πR

2πR
=

∆R

R
=

t

2R
.

The bending moment ,on the other hand is given

M =
∫ t/2

−t/2
ydF, (3)

according to the stress-strain relationship
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Figure 3:
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where A is the cross-sectional area of the bent beam. Using this relationship in Eq.(3), we
get

M =
E

R

∫ t/2

−t/2
y2dA =

EI

R

where

I =
∫ t/2

−t/2
y2dA

is the moment of inertia of a slice with unit mass per unit area. In our case the cross-section
is a rectangle and I becomes

I =
∫ t/2

−t/2
wy2dy =

wt3

12

In view the above relationship, Eq.(2) can be written

P
h

2
= M1 +M2 =

E1I1 + E2I2
R

(4)

Thermal expansion induces internal tensile and compressive forces and bending. The strain
due to these effects for each layer is given

γ1 = α1T +
P1

wt1E1

+
t1
2R

γ2 = α2T −
P2

wt2E2
−

t2
2R

.
(5)

Since there is no slipping, γ1 = γ2 or

α1T +
P1

wt1E1
+

t1
2R

= α2T −
P2

wt2E2
−

t2
2R

(6)

from Eq.(4)

P1 = P2 = P =
2

h

(

E1I1 + E2I2
R

)

substituting this into Eq.(6) and solving for
1

R
gives us the curvature of the bent structure

Γ =
1

R
=

(α2 − α1)T
h
2

+ 2(E1I1+E2I2)
hw

( 1
t1E1

+ 1
t2E2

)
(7)

where in the above T is the temperature and

Ii =
wt3i
12

i = 1, 2
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Figure 4:

II Bending of two bonded layers with movement at

the interface

Two layers of lengths 2l, thicknesses of t1, t2, and unit widths bonded by an adhesive of
thickness η are shown below where γi, and Gi, i=1,2 are Poisson’s ratio and shear modulus
respectively. The other parameters have been defined in Section I. Force and moment dia-
gram of a small section of the above structure is shown below Since the whole structure is
in equilibrium, the equilibrium of moments requires that

dM1/dx− V1 + τ0t1/2 = 0,
dM2/dx− V2 + τ0t2/2 = 0,

(8)

the equilibrium of horizontal forces requires that

dT1/dx− τ0 = 0,
dT2/dx+ τ0 = 0,

(9)

and the equilibrium of vertical forces requires that

dV1/dx− σ0 = 0,
dV2/dx+ σ0 = 0.

(10)

From elementary bending theories (see Appendix A) we have

d2v1/dx
2 = −M1/D1

d2v2/dx
2 = −M2/D2

(11)
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where

Di =
Eit

3
i

12(1 − γ2
i )
, i = 1, 2

are the flexural rigidities. As we found in Section I, the unit enlongation due to thermal
stress and bending are given

du1

dx
=

(1 − γ2
1)T1

E1t1
−

6M1(1 − γ2
1)

E1t21
+ (1 + γ1)α1T

du2

dx
=

(1 − γ2
2)T2

E2t2
+

6M2(1 − γ2
2)

E2t
2
2

+ (1 + γ2)α2T
(12)

Finally, the stress in the joint material is assumed to depend on the displacements (u1, v1)
and (u2, v2) according to the equations

τ0/G0 = (u1 − u2)/η
σ0/E0 = (v1 − v2)/η

(13)

here G0 and E0 are the shear and Young’s modulus of the joint material.
Now with the above equations the problem is fully formulated. With appropriate bound-

ary conditions, the analysis is complete. The boundary conditions at x = l are given

M1 = M2 = 0
T1 = T2 = 0
V1 = V2 = 0

(14)

The above set of equations (Eq.(8) through Eq.(13)) can be reduced to a single sixth-order
differential equation for σ0. A solution of the differential equation can be found containing six
constants of integration permitting the six boundary conditions to be satisfied [3]. Following
the analysis in [3], the differential equation for σ0 is given

d6σ0

dx6
−
G0c

η

d4σ0

dx4
+
E0b

η

d2σ0

rdx2
−
G0E0(bc− a2)σ0

η2
= 0 (15)

where the constants a, b, and c are defined as

a = 6

[

(1 − γ2
1)

E1t
2
1

−
(1 − γ2

2)

E2t
2
2

]

,

b = 12

[

(1 − γ2
1)

E1t31
+

(1 − γ2
2)

E2t32

]

,

c = 4

[

(1 − γ2
1)

E1t1
+

(1 − γ2
2)

E2t2

]

.
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The solution of Eq.(15) is related to the roots of the algebraic equation

y3 −
G0c

η
y2 +

E0b

η
y −

G0E0(bc− a2)

η2
= 0

let

a0 = −
G0E0(bc− a2)

η2
,

a1 =
E0b

η
,

a2 = −
G0c

η
,

r =
(a1a2 − 3a0)

6
−
a3

2

27
,

q =
a1

3
−
a2

2

9
.

then the roots of the above algebraic equation are

y1 = β1,

y2 = βH + iβV ,

y3 = βH − iβV .

where

β1 = (s1 + s2) −
a2

3
,

βH = −
1

2
(s1 + s2) −

a2

3
,

βV =

√
3

2
(s1 − s2).

and

s1 =

√

r +
√

q3 + r2

s2 =

√

r −
√

q3 + r2

then the solution to (Eq.15) is given

σ0 = A1 cosh β1x + A3 cosh βHx cos βV x+ A5 sinh βH sin βV x. (16)
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the constants A1, A3, and A5 are determined by the boundary conditions (Eq.14). Similarly
the shear stress τ0 is determined to be

τ0 = C1 sinh β1x + C2 sinh βHx cos βV x+ C3 cosh βHx sin βV x. (17)

The details of expressions for the constants A1..., C3 are given in Appendix B.
The radius of curvature of a bent layer, at least to our beam approximation, is propor-

tional to the bending moments M1 and M2. M1 and M2 can be found from the expressions
for σ0 and τ0 by integrating the set of equations (Eq.8) and (Eq.10). The constants of inte-
gration can be found from the boundary conditions (Eq.14). Since the integration is straight
forward, we skip the details and write down the functional form of M1(x) and M2(x). All
the constants appearing in these expressions are given in Appendix B.

M1(x) = ψ1 cosh β1x+ ξ1 sinh βHx sin βV x + ξ2 cosh βHx cos βV x + Ω1x + Θ1, (18)

and

M2(x) = ζ1 cosh β1x− ξ3 sinh βHx sin βV x+ ξ4 cosh βHx cos βV x+ Ω2x + Θ2. (19)

III Appendix A

We found in the main text that the unit enlongation in x and y directions of an element
abcd at distance z from the neutral surface are

εx =
z

ρx
, εy =

z

ρy

where, ρx and ρy are the radii of curvature in the x and y directions. From Hook’s law

εx =
1

E
(σx − γσy), (A-1)

εy =
1

E
(σy − γσx). (A-2)

where γ is Poisson’s ratio. From the above equations we find

σx =
Ez

1 − γ2
(

1

ρx

+ γ
1

ρy

), (A-3)

and

σy =
Ez

1 − γ2
(

1

ρy

+ γ
1

ρx

). (A-4)
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The normal stress distribution over the lateral sides of the element in the above figure can
be reduced to couples which must be equal to the bending moments

∫ h/2

−h/2
σxzdzdy = Mxdy,

∫ h/2

−h/2
σyzdzdx = Mydx.

Substituting from (Eq.A-3) and (Eq.A-4) for σx and σy gives

Mx = D(
1

ρx
+ γ

1

ρy
),

and

My = D(
1

ρy
+ γ

1

ρx
).

where

D =
E

1 − γ2

∫ h/2

−h/2
z2dz =

Eh3

12(1 − γ2)

is the flexural rigidity of the plate. In our analysis in the main text we have assumed that
the bending occurs only in one direction which means that the relation between the bending
moment and flexural rigidity reduces to

M =
D

ρ
(A-5)
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From differential geometry, on the other hand, we know that the curvature of a bent beam
is given

1

ρ
= −

d2v

dx2

(1 + (
dv

dx
)2)

3/2

where v denotes the deflection of the beam. For small deflections this relation reduces to

1

ρ
≈ −

d2v

dx2

From (Eq.A-5) we find

d2v

dx2
= −

M

D
.

IV Appendix B

In order to be able to write down more compact expressions for the constants appearing in
the main text, we define the following parameters:

τ =
(9E0G0)

η2
[(1 + γ1)α1 − (1 + γ2)α2)]T

CHC = cosh βH l cos βV l,

SHS = sinh βH l sin βV l,

CHS = cosh βH l sin βV l,

SHC = sinh βH l cos βV l,

βs = (β2
H + β2

V ),

βd = (β2
H − β2

V ),

βm = βHβV ,

p1 = β2
1 cosh β1l,

p2 = βdCHC − 2βmSHS,

p3 = βdSHS + 2βmCHC,

p4 =
sinh β1l

β1
,

p5 =
βV

βs
CHS +

βH

βs
SHC,
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p6 =
βH

βs
CHS −

βV

βs
SHC,

p7 = (β4
1 +

E0b

η
) coshβ1l,

p8 = [βd − 4β2
m +

E0b

η
]CHC − 4βmβdSHS,

p9 = [βd − 4β2
m +

E0b

η
]SHS + 4βmβdCHC.

The constants A1, A3, and A5 are then given

A1 =
τ(p2p6 − p3p5)

Den
,

A3 =
τ(p3p4 − p1p6)

Den
,

A5 =
τ(p1p5 − p2p4)

Den
,

where

Den = p7(p2p6 − p3p5) + p8(p3p4 − p1p6) + p9(p1p5 − p2p4)

from here C1, C2, and C3 are found to be

C1 =
η

β1E0a
(β4

1 +
E0b

η
)A1,

C2 =
η

E0a
(γ1A3 − γ2A5),

C3 =
η

E0a
(γ1A5 + γ2A3).

Next we define the following set of parameters

φ1 =
A1

β1
,

φ2 =
(A3βV + A5βH)

βs
,

φ3 =
(A3βH − A5βV )

βs
,

ψ1 =
(φ1 − C1

t1
2
)

β1
,
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ψ2 =
(φ2 − C3

t1
2
)

βs
,

ψ3 =
(φ3 − C2

t1
2
)

βs

,

ζ1 =
(φ1 + C1

t2
2
)

β1

,

ζ2 =
(φ2 + C3

t2
2
)

βs

,

ζ3 =
(φ3 + C2

t2
2
)

βs
,

Ω1 = −(φ1 sinh β1l + φ2CSH + φ3SHC),

Ω2 = −Ω1,

ξ1 = ψ2βH + ψ3βV ,

ξ2 = ψ3βH − ψ2βV ,

ξ3 = ζ2βH + ζ3βV ,

ξ4 = ζ2βV − ζ3βH ,

Θ1 = −ψ1 cosh β1l − ξ1SHS − ξ2CHC − Ω1l,

Θ2 = ζ1 cosh β1l + ξ3SHS − ξ4CHC − Ω2l.
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