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ABSTRACT  The adiabatic mode parabolic equation is generalized to the case of an ocean over-
lying an elastic bottom. This three-dimensional model is valid when the medium varies sufficiently
gradually with the horizontal coordinates so that both coupling of energy between modes and the
azimuthal component of displacement may be neglected. The efficiency of the model is dernonstrated
by applying it to solve a global-acoustics problem involving diffraction by the Hawaiian Islands.

1. Introduction

There has been relatively little three-dimensional propagation modeling in ocean acoustics
[1-3] because three-dimensional calculations have been widely regarded as impractical and
unnecessary. Many ocean acoustic propagation problems may be soived accurately with the
uncoupled azimuth approximation [4], which is based on neglecting the term in the wave
equation that involves azimuthal derivatives, This is an important approximation because
it is rarely practical to solve three-dimensional problems. Interest in three-dimensional
modeling is currently increasing because of a wide interest in shallow water acoustics.

The adiabatic mode parabolic equation (PE) [5] is a three-dimensional propagation model
that is practical for solving many problems of interest. This approach is based on the
adiabatic mode solution [6], which arises from the assumption that energy coupling between
the modes is negligible, and the parabolic equation method [7,8], which is an efficient
approach for solving range-dependent problems in ocean acoustics (9,10]. The adiabatic
mode PE has been used to solve global-scale problems at low frequencies [11]. This approach
has been generalized to handle the effects of fluid flow and applied to model acoustic
propagation from the impact sites of the fragments of Comet Shoemaker-Levy 9 with Jupiter
{12].

In this paper, we extend the adiabatic mode PE to handle problems involving elas-
tic ocean bottoms. The PE method was previously extended to elastic media for two-
dimensional (range and depth) problems [13-16]. In Section 2, we derive the adiabatic



mode PE for problems involving an ocean overlying an elastic ocean bottom. The elastic
parameters may vary piece-wise continuously in depth. Horizontal variations in the elastic
parameters must be sufficiently gradual so that mode coupling and the azimuthal compo-
nent of displacement may be neglected. In Section 3, we apply the adiabatic mode PE to
a global-scale test problem involving diffraction by the Hawalian Islands. We compare the
coupled and uncoupled azimuth solutions to illustrate the importance of three-dimensional
effects.

2. The Adiabatic Mode Parabolic Equation

In this section, we describe the adiabatic mode solution for sound propagation in an ocean
overlying an elastic bottom. We work in cylindrical coordinates, where z is the depth below
the ocean surface, r is the horizontal distance from a time-harmonic point source of circular
frequency w, and @ is the azimuth. The spatially varying parameters are the compressional
speed ¢,, the shear speed c,, the density p, the compressional attenuation 8y, and the shear
attenuation §,. In the water column, ¢, = 3, =3, =0and p=1 g/cm

We remove the time-dependent factor exp(—iwt)} and the cylindrical spreading factor
r~1/? from the dependent variables. We assume that horizontal variations in the elastic
parameters are sufficiently gradual so that energy does not couple between modes and that
the azimuthal component of displacement is dominated by the other components. Under
these assumptions, the following equations of motion are valid in the farfield [16]:

A 1 8*A
a8 rormsSa 2o ] raras

dp 0w 23p a [0A dudw\ _
or T e ( +23: 32 )‘0 )
Pw 18w dw ) au dw _

where w is the vertlca.l d1sp1a.cement, A is the dlvergence of the displacement vector, and
the complex Lamé parameters A and p are defined in [16]. These equations are valid for
elastic layers involving piece-wise continuous depth variations in the elastic parameters. The
interface conditions described in [16] are applied to handle problems involving fluid layers.
The equations of motion are in the form,

M’ A 1 8% (A . A 0
'aﬁ(w)“LFfEﬁ(w)*L M(w)‘(o)’ @
where the matrices L and M contain depth operators.
The normal mode representation of the solution of (3) is of the form,

(2) = (ung) v 8
[~y (ﬁ:) =k§(r,9)($:), %)

where (An,w,) and k2 are the modes and eigenvalues {17,18] and ¥, is to be determined.
The semicolons in the arguments of A, and w, indicate gradual variation with » and 6.



Substituting (4) into (3) and applying the assumption that energy coupling between modes
may be neglected, we obtain the adiabatic mode wave equation,

Y, 1 8%,
G+ g k=0 ©

We factor the operator in (6) into incoming and outgoing operators to obtain
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Assuming that outgoing energy dominates, we obtain the outgoing adiabatic mode wave

equation,
ov . J1 ot
o = mae TR (8)

We rearrange (8) to obtain

¥ _ ikovTF Xebm, (9)
or
o1 8
X=k02(;-fb—05+k§—k§), (10)

where ko is a representative horizontal wave number. Substituting a rational approximation
for the square root in (9), we obtain the adiabatic mode PE,

3‘(,/)" o o a,-,mX
61‘ = 1k0 (1 +§ 1+ bj,mX) '¢’n- (11)

This equation is solved with standard numerical techniques as described in [5]. Choices for
the coefficients a;m and bj, are given in [16,19].

3. Application to Global Acoustics

There has recently been a great deal of interest in global acoustics [20-22]. To apply the
adiabatic mode PE to global-scale problems, we replace the spreading factor r~1/2 with
R-Y7, where

R = Rosin (—1%) : (12)

and Rp is the radius of the earth. The following generalization of (8) was derived in [5] for

this case:
W 18,
B = moe v (13)

This equation is solved with the same approach that is used to solve (8).

We apply the adiabatic mode PE to a problem involving a 1-Hz source to the southeast
of the Hawaiian Islands at 210° E and 15° N. Since the geographic dependence of the
sound speed in the ocean is a minor factor for this problem, we use a single profile that
is representative of temperate regions. Since we do not have access to a global data base



Figure 1. Adiabatic mode PE solutions for the first mode at 1 Hz. Azimuthal coupling,
is ineluded (top) and neglected (bottom). The dynamic range is 100 dB. with red
corresponding to high intensity and blue corresponding to low intensity.



Figurc 2. Magnified view of the solutions appearing in Figure 1. Azimuthal coupling
is included (top) and neglected (bottont). The dynamic rauge is 100 dB. with red
corresponding to high intensity and blue corresponding to low intensity.



for the parameters of the ocean bottom, we also use constant profiles for these parameters.
The wave speeds are linear functions of depth defined by the values ¢ (20) = 3400 m/s,
¢p(z1) = 6000 m/s, ¢,(2p) = 1700 m/s, and c, (z1) = 3000 m/s, where 2o = 0 and z; =
20 km. The parameters p = 1.5 g/cm?®, Bp = 0.1dB/A, and 8, = 0.2 dB/X are taken to be
constants.

Appearing in Figures 1 and 2 are adiabatic mode PE solutions for the first mode that
include and neglect azimuthal coupling. The Hawaiian Islands cast a shadow that is broad-
ened by horizontal refraction (an azimuthal coupling effect). Since the horizontal phase
speed is larger in shallower water, this is consistent with the ray solution. These solutions
are qualitatively similar to the solutions that appear in {11] for the case of a fluid bottom
that has a qualitatively similar horizontal phase speed dependence on ocean depth.

The adiabatic mode PE computation required about 5 hours on a Silicon Graphics com-
puter with a 150-MHz MIPS R4400 chip. The computations were done using a three-term
rational approximation in the adiabatic mode PE, a range step of 10 km, and 256 azimuthal
grid points per degree. The computations were carried out over the entire earth, including
the oceans and the continents. The first eigenvalue was obtained as a function of ocean
depth using the approach described in [17,18].

4. Conclusions

The adiabatic mode PE has been extended to handle problems involving an ocean overlying
an elastic bottom. This technique is valid when mode coupling and the azimuthal compo-
nent of displacement are negligible and is practical for solving large-scale three-dimensional
problems. The efficiency of the model was illustrated by applying it to solve a global acous-
tics problem involving diffraction around the Hawaiian Islands.
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