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The method of Gaussian beam tracing has been extensively studied in the last 15 years, 
especially in seismology.  In ocean acoustics there are now four implementations that are 
superficially similar but with quite different characteristics.  The method of Simple Gaussian 
Beams [Bucker, 1975] expands the beam-width in proportion to the range from the source.  
In 1984, Porter and Bucker developed a more formal procedure based on work in seismology 
of Cerveny, et al., that uses differential equations to track the beam spreading.  In the late 
80's, Porter used the beam structure to develop Geometric Beam Tracing which uses the 
Gaussian beam equations to calculate the spreading of the ray tube.  Finally, in 1990 
Weinberg and Keenan developed GRAB (Gaussian Ray Bundles) which is closely related to 
Geometric Beam Tracing but which limits the beam focusing in a way which seems to handle 
simple caustics accurately.  In this paper, we compare the pros and cons of the different 
approaches in a variety of ocean scenarios.  
 

1. INTRODUCTION 

Ray models are well suited for the prediction of sound fields in range-dependent 
environments.  This is particularly true for high frequency problems, since ray theory 
represents a high-frequency limit for the wave solution, and wave models can become 
computationally intensive for such problems.  In addition, ray methods are useful for solving 



  

broadband problems since many parts of the computation are independent of frequency (e.g. 
ray paths and travel times).   

 
Nevertheless, ray methods suffer from a number of practical limitations.  First, since the 

intensity in most ray models is calculated from the spreading of two adjacent rays, caustics 
(points of infinite intensity) appear in regions where ray paths cross or converge.  The 
incorporation of the appropriate phase change at a caustic can be difficult.  Second, ray 
models predict non-physical perfect shadows in regions where rays do not propagate. Third, 
ray models typically attempt to locate eigenrays (rays that connect source and receiver), 
which is a difficult nonlinear root-finding problem.  This problem becomes particularly 
worrisome when dealing with propagation in three dimensions.  Fourth, most ray models 
introduce numerical artifacts that decrease the accuracy of the solution compared to ray-
theoretic results.  Lastly, the ray solution is inherently a high-frequency solution; this 
precludes its use at low frequencies in complex environments that could profit from its range-
dependent features. 

 
Gaussian beam tracing was introduced as a method which retains the good qualities of ray 

methods, while addressing the above implementation problems.  This method consists of 
approximating a given source by a fan of beams that propagate through the medium 
according to the standard ray equations.  The influence of a beam is defined by a Gaussian 
distribution, or other symmetric function, centered about that beam.  The field at any given 
point is then constructed by adding up the contribution from each beam at that point.  This 
method therefore does not require eigenray computation.   For a Gaussian distribution, 
perfect shadows and infinite caustics are eliminated, and the applicability to lower frequency 
problems in improved.  In addition, if a triangle distribution is used, the method recovers the 
ray-theoretic result. 

 
There are four approaches to the Gaussian beam tracing method currently being applied to 

the ocean acoustics problem.  While superficially similar, they differ mainly is the type of 
beam distribution used (Gaussian or triangle) and the manner in which beam spreading is 
handled.  The most rigorous method is that of Porter and Bucker [1], which is based on the 
seismological work of Cerveny. et al. [2]  In this approach, which will be referred to as the 
Cerveny Method, Gaussian beam spreading is governed by a pair of differential equations 
which are integrated along with the standard ray equations.  Bucker [3] provides a simpler 
approach, termed Simple Gaussian Beams (SGB), in which the beam-width expands in 
proportion to the arc length of the beam path. Porter [4] later used the beam construct to 
develop Geometric Beam Tracing (GBT), which uses the Cerveny beam equations to 
calculate the spreading of the ray tube.  GBT replaces the Gaussian distribution with a 
triangle function, with the beam influence decreasing from its maximum at the center ray to 
zero at the adjacent rays.  The result is a model that precisely recovers the ray-theoretic result.  
Weinberg and Keenan [5] introduced the similar concept of Gaussian Ray Bundles (GRB), 
but with an additional feature which limits the beam focusing such that simple caustics are 
handled accurately.   Without these limits, GRB and GBT are essentially the same, except for 
beam distribution used.  Both the SGB and Cerveny methods require certain parameters to be 
set (e.g. the starting conditions of the beams) to run the models. This is not the case for the 
GBT and GRB approaches, which is an obvious advantage. 

 
The purpose of this paper is to compare predictions obtained by these methods with each 

other and a reference solution (normal modes).  Such a comparison is useful for gaining an 
understanding of the merits and drawbacks of each approach. 



  

2. BEAM TRACING ALGORITHMS 

All algorithms trace a fan of rays from a source using the standard ray equations [6]: 
 
 
 

 
where r(s), z(s) is the ray trajectory in cylindrical coordinates, (ξ(s),ζ(s)) is a tangent to the 
ray, s is arc length along the ray, and c(s) is the sound speed along the ray.  The initial 
conditions specify the source location and the slope of the emitted ray: 

   
 
 
where (r0, z0) is the source coordinate and α is the ray launch angle. 

 
The pressure field due to each beam can be written as: 
 
 

where ω is the source frequency, τ(s) is the travel time along the ray, A(s) is the amplitude 
along a ray, n(s) is the normal distance from the receiver to the central ray of a beam, and 
φ(n) is the influence function in the direction normal to the ray path.  The four beam tracing 
algorithms differ mainly in the choice of A and φ.  The expressions for A and φ for the four 
algorithms are simply presented here for a point source; the reader is referred to references 
[1]-[5] for derivation details.  In these expressions, r is the range, δα is the difference in 
angles between adjacent rays, and W(s) is the beam-width in the direction normal to the ray.  
 
Cerveny: 
 
 

where p(s) and q(s) determine the beam curvature and width, and are obtained by integrating 
a pair of ordinary differential equations along the central ray (see Ref. [1]).  The initial values 
of p and q must be selected.  In this paper, it is assumed that the beam is initially flat and that 
the initial beam-width is such that the beams are “space filling” in the farfield [ p(0)=1, 
q(0)=2ic2(0)/{ω(δa)2} ]. 
 
SGB: 

 
 
 
where a = -4 ln (β) / (δα)2.  β, called the beam factor, is the value of the beam at the midpoint 
between adjacent beams, and is specified by the user.  In actual implementation, a correction 
factor is included in φ to account for wavefront curvature. 
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GBT: 
 
 
 
 
 
 
 
 
 
 
GRB: 
 
 
 
 
 
where W = q(s)δα/c(0).  The implementation of GRB in this paper differs from that of 
Weinberg and Keenan [5] in that beams are formed in terms of pressure instead of intensity. 

3. TRANSMISSION LOSS COMPARISONS FOR TEST CASE 

The test case considered in this paper is a deep-water (5000 m) environment with the 
canonical Munk profile, which is plotted in Fig. 1 along with the corresponding ray trace for 
a source depth of 1000 m.  The rays shown are for launch angles between –20° and 20° with 
a 1° increment.  Figure 2 presents the KRAKEN normal mode[7] solution for the 
transmission loss for the same source depth and launch-angle limits at a frequency of 50 Hz.  
For the KRAKEN result, the bottom was assumed to be a homogeneous fluid half-space with 
a compressional sound speed of 1600 m/s, a density of 1.0 g/cm3, and no volume attenuation.  
All of the beam-tracing results will also use this bottom model.  The field is seen to exhibit a 
typical deep-water convergence-zone behavior, containing several caustics and shadow 
zones.  Some limited bottom-reflecting energy is also included, causing energy to partially 
fill the shadow zones. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  (a) Munk sound speed profile and (b) corresponding ray trace for a source 
depth of 1000 m.  Launch angles in (b) are between –20° and 20° with a 1° increment.
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The 50-Hz transmission loss predicted by each of the four beam-tracing algorithms (blue 

lines) for the test case is compared with the corresponding KRAKEN normal mode result (red 
line) in Fig. 3.  The source depth is 1000 m, the receiver depth is 800 m, and 100 beams were 
launched between –20° and 20° in all cases.  Figure 3a is for the Cerveny method with the 

Fig. 2. 50-Hz transmission loss for the Munk profile using KRAKEN normal 
mode code.  Source depth = 1000 m.  Launch-angle spread is –20°  to +20°.  

Fig. 3.  Comparison of predicted 50-Hz transmission loss using beam-tracing algorithms 
(blue curves) with reference normal mode solution (red curve).  Source depth = 1000 m.  
Receiver depth = 800 m.   100 beams launched between –20° and +20° . 



  

optimal starting beam conditions, Fig.3b for GBT, Fig. 3c for GRB with beam-focusing 
limits, Fig. 3d for GRB without beam-focusing limits, Fig. 3e for SGB with a beam factor of 
0.9, and Fig. 3f for SGB with a beam factor of 0.5.  All beam tracing algorithms are seen to 
agree well with the normal mode reference solution, with the exception of the SGB result for 
a 0.5 beam factor, where the resulting beam-widths are too large.  (The results between 
roughly 12 and 23 km are not meaningful since this is the portion of the shadow zone without 
bottom-reflected energy.)  The Cerveny method has difficulty reproducing the peak in the 
normal mode solution near 80 km while SGB with a 0.9 beam factor is unable to predict the 
valley in the normal mode solution near 85 km.  Sharp caustics are present in the GBT and 
GRB/no beam-focusing-limit results, since the methods basically recover the ray-theoretic 
result.  The effectiveness of the GRB beam-focusing limits in suppressing caustics is 
demonstrated by comparing Fig. 3c with Fig. 3d. 

4. SUMMARY 

The similarities and differences between four beam-tracing algorithms have been 
discussed and the quality of their predictions compared for a deep-water test case.  Other test 
cases are presented in the conference presentation.  All algorithms agree well enough with the 
reference solution to warrant their use in practical applications.  GBT and GRB possess the 
important advantage of not requiring certain parameters to be set before execution.  The 
beam-focusing limits with GRB provide useful means of handling caustics. 
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