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The Gaussian beam tracing method has recently received a great deal of attention for treating
various problems in wave propagation. Principally, the technique competes with conventional
ray tracing but has the advantages of not requiring eigenray computations and of being free of
certain ray tracing artifacts such as infinitely high intensity levels at caustics and zero intensity
levels in shadow zones. The method employs a fan of beams to approximate the field due to a
point source in a medium with arbitrary variation of the wave speed(s). The central axis of the
beam follows a path governed by the usual ray equations. These ray equations are augmented
by additional differential equations which govern the evolution of the beam radius and curvature
as a function of arclength. We consider two applications of Gaussian beam tracing. First, we
treat the standard ocean acoustic problem of a “monochromatic” point source in a cylindrical
waveguide with a sound speed, ¢(r, z), which depends on both range and depth. Secondly, we
consider the fully three-dimensional environment (with ¢ = ¢(z,y,2)) employing beams which
form a fan over both azimuthal and elevation-declination angles. Results for several oceanic

scenarios are presented and compared to other solutions.

1. INTRODUCTION

Ray tracing methods play an important role in many
areas of wave propagation. In principal the method is
quite simple, however, in practice the development of a
robust and efficient code is quite complicated. Amongst
the difficulties one encounters are the problem of finding
eigenrays, i.e. the rays which connect the source and
receiver, singularities at caustics and shadow zones. At-
tempts have been made to circumvent these difficulties
by making the rays diffuse. In particular, several ray
codes associate a Gaussian intensity distribution with
each ray with the width of the Gaussian specified by
the user. This is the simplest form of Gaussian beam
tracing.

In an attempt to provide a somewhat more formal ba-
sis for this technique Bucker[1] introduced a procedure
in which the beam width and curvature evolved as a
function of arclength along the ray. In essence these
quantities evolved in a manner consistent with a Gaus-
sian beam in a homogeneous medium.

More recently, a procedure has been introduced in the
seismological literature in which the evolution of the

beams is based on an asymptotic solution of the wave
equation in the vicinity of a ray. This leads to a set
of ordinary differential equations which are easily in-
tegrated along with the standard ray equations and
yield the beam width and curvature as a function of
arclength. This latter approach is nicely described in a
paper by Cerveny, Popov and Pienéik[2] who trace their
ideas back to earlier papers by Babich, Kirpiénikova
and Buldyrev. Similar procedures have also been used
in quantum mechanics([3] and optics[4]. In the context
of underwater acoustics problems we mention Ref. [5]-
which also includes a fairly complete set of references
to the more recent literature.

In the following sections we will review the Gaussian
beam tracing method for azimuthally symmetric ocean
acoustic problems. This provides a simple introduction
to the technique which is subsequently discussed for 3D
problems. Finally, a simple deep-water sound speed
profile is used to demonstrate the method for both 2D
and 3D problems.
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2. GAUSSIAN BEAMS IN TWO-DIMENSIONS

The steps of the Gaussian beam tracing method are ba-
sically 1) trace the central rays of the beams, 2) com-
pute beam width, L(s), and curvature, K(s), describing
the beam about each central ray, and 3) sum up the con-
tributions of each beam to obtain the complex pressure
at each receiver location of interest. Let us consider
each of these steps in more detail.

The central rays of the beams satisfy the usual ray equa-
tions. Thus, introducing (r(s), z(s)) as the trajectory of
a ray in cylindrical coordinates and (p(s),({(s)) as the
tangent vector to the ray one finds,

dr dp 1 dc
"E s cp(")’ d_.! cg dT (1)
dz ¢ iﬂ
- oo ((s), b s F (2)

where s is arclength along the ray and ¢(s) is the sound
speed in the ocean which may vary both as a function
of range and depth. This system of four ordinary dif-
ferential equations may be integrated using any of the
standard techniques, e.g. Runge-Kutta. Initial condi-
tions are that the ray originates at the source location,
(74, 2,) and with take-off angle a. That is,

r(0) = r, p(0)=

%(0)

1
(0) cos a, 3)
2 A = ) sin a. (4)

The next step is to construct a beam about each of the
central rays. This is done by integrating a second set
of ordinary differential equations:

dp Con

20 = Pl o= e, (8)

where c,., is the second derivative of the sound speed
in a direction normal to the central ray. The beam
solution is then given by

ub*™(s,n) = (.s) exp|[—iw(T(s p( ) n?
(6)

where A is an arbitrary constant, n is the normal dis-
tance from the central ray and

o= c(t,)d.,' (1)

is the phase delay along the ray. The source is ‘monochro-
matic’ with angular frequency w. With complex initial
conditions, p and ¢ become complex and the real and
imaginary parts of p/q may be related to beam curva-
ture, K, and width, L via

Ls) = ~20%{p/a},
K(s) = —c(s)R{p(s)/a(s)}-

The optimal choice of initial beam width and curvat
is a matter of current research.

The final step is the summing up of all of the bea
to obtain the complex pressure. The weightings of |
beams are determined by considering a canonical pr
lem of a point source in a homogeneous medium. 1
result is

u(r,2) = Z&a ex( )\/:Im;—f(E beam (

where §a is the angular spacing between beams &
u}*™ denotes the beam with take-off angle .

In order to evaluate this expression one needs to conv
a particular receiver point given in (r,2) coordina
into the ray-centered coordinates (s,n). This sligh
awkward procedure can be avoided by using a repres
tation of the beam directly in the Cartesian coordin
system as suggested by Madariaga[6]. The result is,

ubeum rz -~ c("') exp|—iw{r(r
(n2) = A\ iyl {”*()
1052 2 2 '
+5(827(05E ot +2 “tats t,)}], (

where (t,,t,) = ¢(p, () is the local tangent vector to |
central ray. In addition, Az = (z, — 2(s)) the dista
in the z-direction between the central ray of the be
and the receiver. Note that if the beam is travéll
horizontally, so that {, = 0 then the normal distas
is the same as Az and we recover the original result

Eq. (6).
3. GAUSSIAN, BEAMS IN THREE-DIMENSIONS

The extension to three dimensions is described by Bal
and Popov|7] and requires fairly minor modifications
the 2D algorithm. Let us again go through the th
steps required for constructing the beam solution.
usual we begin by tracing a set of rays however in
3D case the rays form a fan over both azimuthal &
elevation-declination angles. The ray equations in
are given by

dz d¢ 1 de .
F i cﬁ(-’)» —d: i _c_’EE’ (
dy ; dn _ .. 1de .
- o en(s), = o @a (
dz d¢ 1 dec :
R o CC(")’ E - _c_zas (

with initial conditions,
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o0} = & £=—1—cosacosﬂ, (15)

¢(0)

WO) = w 1= g eesasing,  (16)
2(0): 5o %ed C:—l—sina. (17)

<(0)

Here (z,,Y,,2,) denotes the source coordinates and «
and 3 denote the take-off angle in elevation-declination
and azimuth respectively.

Once again, the construction of beams in the neighbor-
hood of the central rays requires the integration of a sys-
tem of auxilliary equations which in three-dimensions
involve five components:

% . cl_z(_c,,.,,.f+2c,,..,h—c,.,.y), (18)
L = ~Af+o), -
% = cP—cl—zc,...Q, (20)
;—‘3 = cP-—%cm,,.Q, (21)
% - _cl—,cmﬂQ. (22)

Here ¢»m and c,, are second derivatives of the sound
speed in the two normal directions €,, and €, where

ém = (L7'[ct(cos ¢+ nsing],

L™ '[en cos ¢ — € sin @], cL cos ¢),
én = (L7'[ct¢sind —ncosd),

L7 '[end sin ¢ + € cos ¢], —cL cos ),

and L = /€% ¥ %. (These formulas are derived in Cer-
veny and Hron[8]). This ray-centered coodinate system
(£,Emy€n) is a rotating trihedral with rotation angle ¢
satisfying the differential equation:

ﬁ = _I_C(ﬂcc =€)

ds ~ ¢fs) £+
which must also be integrated along the central ray of
the beam.

(23)

Once this system is integrated one obtains a represen-
tation of the beam as,

ub‘""(s,rﬁ,n) = Ay/Q(s)exp{—iw[r(s) +
f(8)n? + 2h(s)mn + g(s)m?

. (24
0 I} (29
This representation follows from application of the re-
duced delta matrix method to the equations given by

Babich and Popov. Initial conditions are given by
(P,Q,f,g,h)=(1,€1€z,62,61,0) (25)

where ¢; and ¢, are the (complex) beam constants which
characterize the beam width and curvature in directions
ém and é, respectively.

Finally, the complex pressure is computed by summing
up all of the individual beams with appropriate weight-
ing,

o Jae
aufr ») = §B6a Y2 ybeam 26
(ry2) = 32 386zl Esul (26

4. APPLICATIONS

We consider first an azimuthally symmetric environ-
ment for which the treatment in cylindrical coordinates
is appropriate. The sound speed profile is given by

¢(ry z) = 1500.0{1.0 + ¢(r)[z — 1 + 7]}, (27)

Depth (m)

40.0 60.0 80.0
Range (km)

Figure 1: Ray trace for the deep-water sound speed
profile.
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Figure 2: Intensity for the beam associated with the
horizontally launched ray.

where € = 0.00737+0.0003r and Z = 2(z—1300)/1300 is
a scaled depth. This is a canonical deep water profile[5)
modified in a somewhat contrived fashion to be range-
dependent. A source depth of 1000 m and frequency of

- 50 Hz is selected. The various steps involved in com-

puting the acoustic field are illustrated by the sequence
of figures 1 — 3. Figure 1 shows a fan of rays emanating
from the source position and spectrally windowed to ex-
clude bottom bounce ray paths. Each ray becomes the
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central ray of a Gaussian beam as illustrated in Figure
2 for the horizontally launched ray. Note the focussing
and subsequent defocussing that occurs as the beam
passes through successive caustics of the ray trace. Fi-
nally, the contributions of all of the beams are summed
to yield the pressure field displayed in Figure 3. (The
grey scale plots in this paper employ levels 5 dB apart
with black representing transmission loss of less than

70 dB.)

As mentioned earlier the solution so calculated is free of
certain problems which standard ray codes have such as
singularities at caustics and “drop-outs” where the com-
puted intensity vanishes. Agreement with the parabolic
equation solution (shown in Figure 4) is excellent mea-
sured by standards of either production ray codes or
environmental uncertainty.

We next consider a simple environment with three-dimen-
sional variation of the sound speed. In particular, we
employ Eq. (27) with

¢(r,8) = 0.00737 + 0.0003r sin 6. (28)

CONDR,FIP

» F= 50.0Hz SD=1000.0m

40.0 60.0
Range (km)

Figure 3: Gaussian beam transmission loss for the
deep-water sound speed profile.
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Figure 4: Parabolic equation transmission loss for the
deep-water sound speed profile.

Along the radial § = 7/2 we obtain the sound s;
used previously in the azimuthally symmetric envi
ment. The variation of ¢ causes a sinusoidal distor
of the convergence zone pattern which is visible in
transmission loss plot in Figure 5. The receiver d
in this case is 800 m so that the plot is a ‘plan v
rather than the usual side view of transmission los:

Computation of full three-dimensional fields can req
considerable CPU time. In this case approximately

hours of CPU time were required on a VAX 8600
short-cut which can save significant time is to neg
horizontal refraction and simply apply the 2D code
dependently for each radial slice of the 3D problen
In fact, this ‘N x 2D’ option is also implemente
the 3D version of the code and for this particular
there is no significant difference between the 3D

N x 2D results. (CPU time however is reduced tc
minutes for the N x 2D computation.) In genera
appears unlikely that ocean sound speed profile ve
tion is significant enough to require the full 3D s
tion. On the other hand, bathymetric variation

may induce horizontal refraction and there is some
perimental evidence that this effect is important. S
three-dimensional models will provide an approacl
assessing the significance of this effect in realistic oc
environments.

'
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Figure 5: Transmission loss in the horizontal pl
(z=800 m) for the 3D varying deep-water problem.
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