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Abstract. The sources and receivers at the Pacific Missile Range Facility (PMRF) provide for 
performing acoustic tomography.  A primary problem is that acoustic signals of interest interact 
with the ocean surface, and surface wave fields result in considerable variability in arrival times.  
Arrival times of rays that have interacted with the moving ocean surface are obtained by 
averaging over a number of pings to eliminate errors due to Doppler shifts.  We also present 
transforms using differences between observed travel time anomalies and those calculated using 
an ocean circulation model to make adjustments to model-predicted water temperatures, 
salinities, and currents (model-oriented acoustic tomogra phy). 

INTRODUCTION 

The Pacific Missile Range Facility (PMRF) off Kauai, Hawaii, has 15 bottom-
mounted sources (8-15 kHz) and 178 bottom-mounted receivers.  These assets provide 
for the possibility of performing acoustic tomography throughout the range.  The dis-
tances between source-receiver pairs in the shallow water range are relatively small 
(≤10 km), meaning arrival times are readily detectable.  However, the acoustic signals 
of most interest interact with the ocean surface.  As a result, the surface wave field 
results in considerable variability in arrival times at 8-15 kHz. 

Arrival time anomalies are determined relative to a monthly sound velocity 
structure based on a three-dimensional grid of a hydrodynamic model of the PMRF 
region.  The model provides its own estimate of the four-dimensional sound speed 
structure.  We present trans forms for determining a model-related travel time anomaly 
along the path of a transmitted acoustic ray.  The differences between the two travel 
time anomalies can be transformed back to adjustments of model-predicted water tem-
peratures, salinities, and currents using the Physical-space Statistical Analysis System 
(PSAS) data assimilation scheme[1]. 

THE OCEAN MODELS FOR PMRF 

An adaptation of the hydrodynamic model of the Blumberg and Mellor[2] has been 
implemented for Kauai, Hawaii (Fig. 1).  Bathymetry is from the Smith-Sandwell 
topography[3] augmented with data from NOAA and PMRF. 

 



 

FIGURE 1.  Domain and depth field for the Kauai ocean mo del. 
 
 

Observed temperature and salinity (T-S) characteristics were used in specifying the 
vertical resolution of the model.  The vertical grid structure has 28 active levels with 
higher resolution within the top 100 m and at depths at which salinity extremes exist. 

We utilized the open boundary condition presented in Lewis et al.[4], specifying the 
M2, S2, N2, O1, K1, and P1 tidal sea level elevations and phases along the open bounda-
ries of the model domains.  The boundary values were from the TPXO.3[5] tidal 
model but “tuned” to match observed amplitudes and phases for Kauai. 

Surface waves were modeled using Delft University of Technology’s SWAN 
(Simulating WAves Nearshore[6]).  SWAN is a two-dimensional wave spectra model 
that can use a curvilinear-orthogonal grid.  This allows SWAN to use the same com-
putational grid (and associated depths) as the ocean circulation model. 

Initialization and Forcing Fields 

The model uses the Navy’s daily Modular Ocean Data Assimilation System 
(MODAS) to estimate the three-dimensional T-S structure.  This is used to introduce 
the mesoscale circula tion field into the model.  Atmospheric forcing from the National 
Centers for Environmental Prediction (NCEP) includes momentum, heat, and mass 
fluxes at the air-sea interface.  The SWAN model is forced by the NCEP surface wind 
velocity and, wave spectra along the open boundaries from NOAA’s WaveWatch III 
wave model is used to account for wave energy that propagates into the region. 

Since waves can have a significant impact on ocean circulation[7], the circulation 
model utilized the surface wave model results to calculate 1) wave-enhanced bottom 
friction, 2) Stokes drift and the Coriolis wave stress, 3) radiation stresses, 4) wave-
related mixing length at the ocean surface, and 5) the virtual tangential surface stress. 



CONSTRUCTS RELATED TO THE PSAS DATA ASSIMILATION 

Simulating Acoustic Paths and Travel Times 

We used the locations of the PMRF sources and receivers, model-predicted sound 
speed profiles (SSP), and acoustic propagation models to calculate paths of acoustic 
rays between the sources and receivers.  In many cases, direct-path rays and single-
surface bounce rays had arrival times very close to one another. This was verified with 
actual field data. 

Our simulations indicated that multiple surface bounce acoustic rays were stable in 
the paths they took from source to receiver, and their arrival times were well separated 
from the earlier arrivals.  Moreover, multiple surface bounce rays provide a better 
sampling of the water column.  Due to the drop in signal-to-noise for higher multiple 
surface bounce acoustic paths, we concentrated on analyzing paths that bounced off 
the ocean surface only twice.  Our analyses require a reference sound speed structure 
cR.  This was determined using monthly climatological T-S fields for the region.  The 
PSAS assimilation scheme also requires reference fields for T, S, and current veloci-
ties.  Again, the monthly climatological T-S fields were used, while a reference veloc-
ity of 0 m/s was used throughout space and time. 

Observed and Model-Predicted Travel Time Anomalies 

The observed travel time to for an acoustic path is combined with a reference ocean 
arrival time tR to determine a travel time anomaly: ∆τR = to – tR.  Knowing the path an 
acoustic ray would take through the model domain (individual grid cells denoted by i 
= 1,2,3,…,N), we can calculate an estimated arrival time: t = Σ [ ∆Li / (ci +  Ui )], 
where ci is the sound speed in the ith grid cell, ∆Li is the distance that the ray travels 
through the ith grid cell, and Ui is the component of the three-dimensional current 
along a particular direction of interest responsible for effectively increasing or 
decreasing the sound speed.   

The reference travel time tR uses the reference T-S vs. depth to give individual val-
ues for cR,i, and UR,i is always zero: 
 
 tR = Σ [ ∆Li / cR,i ]. (1) 

 
We used a different expression when dealing with the model-predicted travel time 

anomalies.  A model-predicted travel time is 
 

 tm = Σ [ ∆Li / (cm,i + Um,i ) ] (2) 
where the m denotes model-predicted values.  The model sound speed anomaly is 
 
 ∆ci = (cm,i + Um,i ) – cR,i. (3) 
 
Rearranging (3), substituting into (2), linearizing using cRi

2 >> ∆ci
2, and rearranging 

the result in terms of a travel time anomaly give 
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where N is the number of model grid cells through which the ray travels.  Errors asso-
ciated with the linearization approximation are in eLIN(t), and the discretization errors 
are in eDIS(t).  The eLIN(t) term also includes those errors resulting from the assumption 
that the ray path does not vary with time. 

On the right hand side of (4), we have represented the summation as the multiplica-
tion of the b vector of the constant -∆Li/c2

R,i terms and the ∆c vector of the time-
varying terms ∆ci(t).  All errors have been combined into eFM(t). 

We can group all of the model-related acoustic travel time anomaly measurements 
into a measurement matrix equation: 
 

 ).()()()( tttt zeeHxz FM ++=  (5) 
 
The M travel time anomaly measurements (∆τ’s) of P source-receiver transects made 
at a given time t are in the column vector z(t).  The rows of the H matrix are the b 
vectors.  The number of columns in H will be the maximum of the N’s (Nmax), and 
there can be a number of zero entries in H.  The ∆c for each grid cell through which a 
ray path travels is the Nmax column vector x.  

Tomographic Transformation of Equation (5) 

Equation (5) must be transformed to relate travel time anomalies to ocean model 
variables.  We express the sound speed as a reference cR and a perturbation: 
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For small T and S variations, we can approximate the two partial derivatives as: 
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where α has units of m/s/°C and β  has units of m/s/ppt.  We can rearrange (6) to give 
 
 ∆ci = α∆T + β∆S + U (7) 
 
We use (7) to transform (5) or, in its form in (4), the expression for the model-related 
travel time anomaly along a given path of N grid cells: 
 
 ∆τm = b ∆vT (8) 
 



where now 
 
b = [-∆L1/(∆cR,1)2  -∆L1α /(∆cR,1)2  -∆L1β  /(∆cR,1)2   … 
                                                         -∆LN /(∆cR,N)2   -∆LNα /(∆cR,N)2   -∆LNβ  /(∆cR,N)2] 
 
and the ∆v vector is 

 
∆v = [U1   ∆T1   ∆S1   … UN   ∆TN   ∆SN]. 

 
Each of the parameters in ∆v is the known model-predicted variable relative to the ref-
erence value.  We will use the above b for the rows in H and ∆v for the column vector 
x.  Our tomographic relationship is (8), relating acoustics to T, S, and U. 

Assimilation of Tomographic Information Into The Ocean Model 

We define ocean parameters as x, xF and xA, vectors representing the true state, the  
forecasted estimate, and the analysis estimate, respectively.  The vectors x, xF and xA 
are time dependent, and the three-dimensional T, S, and U fields form our state vector. 

The basic expression to determine the analysis (updated) field combines the fore-
cast estimate xF with the acoustic-related measurements zR (the ∆τR’s) using the 
model-related measurement matrix H as follows (the PSAS formulation)1 : 

 
 ( ).FFA HxzKxx −+= R  (9) 
 
Here, zR - HxF is the measurement residual.  K is the residual (Kalman) gain matrix: 
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PF is the forecast error covariance 
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and R is the observation error covariance 
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Here, the total observation error covariance is expressed as a sum of the model 
error covariance and the measurement error covariance.  The former can be estimated 
using archived ocean model output to evaluate the expected travel time differences 
between a linear discrete acoustic model (such as that embodied here in the measure-
ment matrix H) and an acoustic propagation model based on a solution to the wave 
equation.  The latter term can be estimated from the second order statistics of an 
ensemble of arrival time observations.  The Kalman gain distributes the measurement 
residual throughout the forecast model domain.  Corrections are assigned mostly to 



regions closest to the observations and where the forecast model uncertainty is highest. 

Use of Equation (9) For This Study 

For this study, (9) was simplified assuming that travel time anomalies were primar-
ily a result of the differences between predicted and ocean water temperatures.  In this 
case, xF and xA are vectors of forecasted and analysis temperatures relative to monthly 
reference temperatures: xF =  Tmodel – Treference and xA =  Tanalysis – Treference.  Since 
Treference appears on both sides of (9), that the expression can be simplified to 

 
 Tanalysis = Tmodel + ( )FHxzK −R .    

 
The rows of the H matrix now consist of  
 

b = [-∆L1α /(∆cR,1)2  -∆L2α /(∆cR,1)2 …  -∆LNα /(∆cR,N)2] 
 

for each ray path.  zR is the column vector of “observed” travel time anomalies.  Thus, 
all the terms on the RHS of (9) are defined, and we can solve for Tanalysis. 

Calculating Covariance Functions 

In this study, the error covariance matrices PF and R were derived from the esti-
mates of the spatial covariance of the model-predicted temperatures: 
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PF can be estimated using ensembles of model temperature time series.  This always 
results in over-estimating the error covariance.  As a result, the rate of spatial decor-
relation of a model variable is underestimated.  Thus we would expect the observa-
tions to be more spatially limited in their impact on the analysis fields. 

Implementation 

In implementing our data assimilation scheme, we limited the model grid cells 
impacted by acoustic observations to those within 10 km of any ray path being consid-
ered.  If Lmax is the number of grid cells within the 10 km range, then PFHT for the p 
ray is an Lmax column vector.  There are 12 monthly column vectors for any ray path.  
All terms in the HPFHT matrix are known, and each monthly matrix was calculated.  
HPFHT was used to represent the R array until some future time when we can make an 
accurate estimate of R.  The monthly HPFHT matrices were inverted and multiplied by 
PFHT to give 12 Lmax x Pmax arrays, where Pmax is the number of ray paths being con-
sidered. 

Thus, the analysis and assimilation software only requires the monthly databases of 
1) the PFHT(HPFHT)-1 elements, 2) the reference temperatures along the acoustic 
paths being considered (for ∆v in (8)), and 3) the -α ∆LN / 2

,NRc values (for b in (8)). 



ACOUSTIC DATA ACQUISITION SYSTEM (ADAS) 

To allow near autonomous repetitive collection of acoustic data using the PMRF 
hydrophone network, we implemented an Acoustic Data Acquisition System (ADAS).  
Transmissions can be made from any the PMRF acoustic projectors.  Any combination 
of the PMRF receivers can be specified for recording acoustic signals. 

Each transmitted signal is replica-correlated with the received signal.  The received 
signal is modeled as a sum of ray arrivals given by  
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where an is the weight associated with each arrival, s(t) is the transmitted signal and τn 
is the delay associated with each arrival.  This model is not strictly correct when deal-
ing with propagation in a shallow water environment.  However, at source frequencies 
of 10 kHz, the effect of dispersion is negligible, and the errors in the model can be 
ignored.   

Two choices for the transmit signal were a chirp signal and a phase-coded 
sequence.  In areas where the acoustic signal interacts with waves on the ocean sur-
face, there can be a Doppler shift that compresses or elongates the signal envelop.  
Matched filter output of this Doppler-shifted signal gives rise to errors in a) estimating 
the arrival time and b) the amplitude of the matched filter output of each arrival.  
Analysis of errors in estimating arrival times showed that the errors in the phase-coded 
sequence were less than that of the chirp signal.  However, the amplitude of the 
matched filter output remained practically unaltered in the case of chirp signal, while 
in the phase-coded sequence it is reduced substantially.  Since averaging can eliminate 
the error in the arrival time due to surface motion, a chirp signal was considered a 
better choice for the transmit signal.  The chirp signals had a center frequency of 9.5 
kHz and a bandwidth of 3 kHz. 

In order to improve the signal- to-noise ratio and to reduce the impact of surface 
motion, we averaged over a number of acoustic transmissions.  Under normal circum-
stances, it would have been appropriate to send a large train of acoustic pulses and 
perform an average over this train of pulses.  However, this was not possible because 
of “cross talk” between the transmitter and receivers.  Instead, we transmitted a 
sequence of 12 acoustic transmissions that consisted of 4 groups separated by 8 sec.  
Each acoustic transmission had a duration of 0.1 sec, with an interval of 0.4 sec 
between each transmission.  The number of pulses in a group was restricted to 3 trans- 
missions to avoid interference due to cross talk.  The distance to the nearest receiver 
set this limitation.  The maximum distance between the source and selected receivers 
dictated the 8 sec separation between groups of transmissions.  The string of 12 trans-
missions was repeated 3 times with an interval of about 30 sec. 

The matched filter output for a varying number of transmissions is shown in Fig. 2.  
We see that a considerable enhancement of the signal-to-noise ratio is achieved by 
averaging over 36 transmissions.  The arrival structure in Fig. 2 consists of one 
stronger group of arrivals followed by three weaker groups of arrivals.  An eigenray[8] 
analysis for this particular source/receiver pair was performed using a sound 



 
FIGURE 2.  Matched filter output for a single transmission (top), an average of 12 transmissions (mid-
dle), and an average of 36 transmissions (bottom). 

 
 

speed field for the region obtained from the ocean model.  The earliest group of arri-
vals consists of rays that travel from source to receiver without interacting with either 
the ocean surface or bottom and others that include a ray that interacts with the surface 
only once and rays that hug the bottom and have repeated interactions with the bottom.  
The arrival time of rays that have only interactions with the bottom carry little infor-
mation about the bulk of the water column.  This plus the problem of delineating indi-
vidual ray arrival times within the first group of arrivals lead us to neglect these arri-
vals in our tomography analysis. 

The subsequent three arrivals in Fig. 2 correspond to rays that have 2, 3, and 4 sur-
face bounces, respectively.  We concentrated on analyzing the path that bounced off 
the ocean surface only twice due to the drop in signal- to-noise for higher multiple sur-
face bounce acoustic paths (the third and fourth groups of arrivals).     

The ADAS collected travel time observations for a double-surface bounce ray path 
just offshore of the 90 m isobath.  The ray path was between a source (D9) some 3.5 
km from a receiver (D12).  The arrival time of a ray with two surface bounces is about 
2.3 seconds.  This is used to readily identify the arrival time of the two-surface bounce 
ray in the ADAS data.  An enhanced view of the matched filter output corresponding 
to the arrival time for this ray (not shown) indicates a distinct peak, with other peaks 
that are likely the result fluctuations in arrival time caused by motion of the ocean sur-
face and the roughness of the ocean bottom.  In order to better determine an arrival 
time, we low-pass filtered the matched filter output. 



DATA ASSIMILATION TEST CASE, JULY 2003 

During June-July, 2003, a series of thermistor strings were placed along the 90 m 
isobath just shoreward of the D9-D12 source-receiver pair.  The distance between the 
D9-D12 ray path and the thermistor arrays was ~0.5 km.  The thermistor data provide 
a means of assessing the impact of assimilating the D9-D12 arrival time anomaly data 
into the ocean circulation model. 

The ocean model was first executed without any acoustic data assimilation, and the 
model-predicted water temperatures were compared to the thermistor data for July 3, 
2003.  The rms differences between the model results and the thermistor data are 
shown in Fig. 3.  These range from 0.4-1.5°C, with maximum differences occurring in 
the lower part of the water column.  The bottom of the surface mixed layer is 
approximately 70-90 m, and tidal forcing can result in considerable semi-diurnal tem-
perature oscillations at this depth. 

A comparison of the model and observed water temperatures at one thermistor 
string in shown in Fig. 4.  There is a distinct bias near the ocean surface where the 
model temperatures are too warm.  For the cooler waters at depth, the scatter is con-
siderable, with the model predictions being as much as 2°C too warm or too cool.   

When dealing with only one ray path, there is a single element of K that is multi-
plied times the corresponding element of zR - HxF for each model grid cell falling 
within the 10 km volume around the ray path.  Thus, a larger value of the element of 
K for a grid cell results in a greater modification in the model-predicted water tem-
perature in that grid cell during the PSAS assimilation process.  An analysis of K 
showed that all the larger values were at water depths from 80-300 m.  Thus, the 
assimilation of travel time anomalies will have the greatest impact on the lower levels  

 
 

 

FIGURE 3.  Contours (°C) of the rms differences between model-predicted water temperatures and 
thermistor data for July 3, 2003, without any assimilation of arrival time anomalies. 



 

FIGURE 4.  A scatter plot of observed and predicted water temperatures at one of the thermistor 
strings for July 3, 2003 without assimilation. 

 
 
of the model grid cells, precisely where the rms differences in Fig. 3 are the largest. 

During June 30-July 3, 2003, 8-11 kHz chirps (linear FM sweep) with durations of 
100 ms were transmitted from D9 36 times over a 2.5-minute period every half hour.  
Output of each transmission was run through the matched filter process, and then the 
36-transmission average was calculated.  After determining the arrival times of the 
double surface bounce path from D9 to D12, travel time anomalies were calculated. 

 

 

FIGURE 5.  Contours (°C) of the rms differences between model-predicted water temperatures and 
thermistor data for July 3, 2003, with the assimilation of arrival time anomalies. 



 

FIGURE 6.  A scatter plot of observed and predicted water temperatures at one of the thermistor 
strings for July 3, 2003 with assimilation. 

 
The model simulations were repeated with the assimilation of the acoustic data.  

The rms differences are shown in Fig. 5.  We see that the rms differences have been 
reduced slightly in the top 30 m but increased somewhat in the lower layers of the 
water column. 

In Fig. 6 we again show a comparison between the observed and model tempera-
tures at the same thermistor string used in Fig. 4.  We see that, although the assimila-
tion process has reduced the scatter of the model predictions, the warmer bias near the 
surface still exists, and there is now a distinct cooler bias in the lower part of the water 
column.  Comparing Figs. 4 and 6, we would conclude that assimilating the one ray 
path has had a positive impact on the model predictions in that it has reduced the 
scatter of the model water temperatures relative to the observed water temperatures.  
However, the assimilation has failed to eliminate the bias of the model predictions 
(e.g., making the surface temperatures cooler and the lower temperatures warmer in 
Fig. 6). 

CONCLUSIONS AND RECOMMENDATIONS 

We have put forward a model-oriented acoustic inversion and assimilation tech-
nique for arrival time anomalies from bottom-mounted sources and receivers.  A test 
of this technology used arrival time anomalies from only one acoustic path.  The 
acoustic information did not have a significant impact on reducing the rms differences 
between the model and observed water temperatures (Figs. 3 and 5).  However, it did 
help in reducing the scatter of the model temperatures relative to the observed tem-
peratures (Figs. 4 and 6). 

To explain the character of the scatter plot in Fig. 6, we note that the K elements 
with the larger values were associated with water depths from 80-300 m.  Thus, the 



assimilation of travel time anomalies had a greater impact on the lower level model 
grid cells.  The acoustic information resulted in a general cooling of the model tem-
peratures (compare Figs. 4 and 6).  The cooling would be applied more at the lower 
parts of the water column and less at the upper parts due to the values of the corre-
sponding elements of the K matrix.  The result is the “cold” bias in Fig. 6. 

The PSAS scheme is critically dependent on the model and observation error 
covariance matrices.  Here we approximated both error covariance matrices by PF.  
We recommend that R be estimated using archived model sound speed structure.  
Travel times could be computed using both a sophisticated acoustic propagation model 
and the simplified model of equation (4).  Comparison of the two model results will 
allow us to characterize the travel time error statistics and error correlation structure. 

We also need to improve the estimate of the model error covariance PF.  If we use 
our most sophisticated simulations as a representation of the true ocean, we could 
subtract this from corresponding “degraded” model simulations.  Degradations could 
include the exclusion of certain forcing or the use of climatological T-S fields.  After 
subtracting the “true” ocean forecast temperatures from the degraded ocean forecast 
temperatures, we could then calculate the spatial covariances to obtain PF. 
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