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Abstract: Normal mode models are widely used for solving range-independent ocean
acoustic problems. The approach generalizes to range-dependent problems by dividing the
problem into a sequence of range-independent segments and using normal modes to
represent the solution in each segment. While this coupled-mode approach has proven
extremely useful for checking other models, it has generally been considered uncompetitive
with parabolic equation (PE) algorithms in terms of run time.

We show that an optimized coupled-mode algorithm is practical and in fact
competitive with the PE. To develop an efficient algorithm, we take advantage of a widely
used finite-difference algorithm for solving the range-independent normal mode problem.
As in PE models, we make the a priori assumption that the field is dominated by the
outgoing component. We also bypass the calculation of mode coupling matrices, and
compute the mode amplitudes in a new segment directly by projecting the pressure field onto
the new mode set. This allows the solution to be constructed by a simple marching. We
illustrate the algorithm using several oceanic scenarios involving range-dependent
oceanographic and bathymetric features.

1. INTRODUCTION

A common starting point for ocean acoustic problems is the Helmholtz equation in
two-dimensions:
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where p is the density, c(r,z) the sound speed, and @ is the circular frequency of the source.
This equation must also be augmented with appropriate boundary conditions.

One way of solving the Helmholtz equation is to divide the problem into a sequence
of N range-independent segments in range [1] as illustrated in Figure 1. Then, within each
range-segment the exact solution can be constructed using normal modes as a sum of right-
and left-traveling waves. Neglecting contributions form higher-order modes or from the
continuous spectrum, the general solution in the jth segment can be written as follows:
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Fig. 1. Segmentation for the coupled mode formulation.

where H1,2 are the following ratios of Hankel functions,
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The boundary conditions imposed imply a pressure release surface located at z = 0 and a
perfectly rigid bottom located at z = D. Then, imposing continuity of pressure and particle
velocity along each of the vertical interfaces leads to a large block-banded matrix for the
mode coefficients @ and &/ in each segment. The pressure field is then computed by
summing up the modes in each segment as given in Eq. (1.2).

This type of approach has been used in the COUPLE model [1] and successfully
applied to a number of benchmark problems [2,3]. While extremely useful for providing
benchmark solutions, the direct solution of the Helmholtz equation in this manner is usually
not practical for ocean acoustic problems because of the execution time.

Instead, for range-dependent problems the method of choice is often a PE type
solution. This approach takes advantage of the fact that ocean acoustics problems are often
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dominated by just the right-traveling component of the solution, leading to equations which
can be rapidly solved by marching forward in range.

Our objective in this paper is to examine the alternative of using coupled-modes in a
similar one-way fashion. The key question is whether or not an optimized marching solution
based on normal modes is competitive in terms of run-time with existing PE models.

2. ONE-WAY COUPLED NORMAL MODES

To obtain the one-way formulation in each segment we seek a solution in the form of
just a right-traveling wave:

M
pitrz) =Y d.zl (2)H1 (r). @1

m=1

With the range of possible solutions restricted to just the right-traveling component,
we must relax the continuity conditions on vertical interfaces. For the sake of comparison
with existing models we have implemented the one-way coupled mode solution using
pressure-matching at interfaces discarding the condition of continuity of particle velocity.
However, as discussed in Ref. [3] this informal step can have important implications for
solution accuracy. A single-scatter type condition is just as easy to implement and yields
much improved results. Therefore, it is normally our method of choice.

The condition of continuity of pressure at each interface can be written:
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where we have used the fact that H ljr.: I( rj) = 1. Taking advantage of the mode
orthogonality, we apply the operator:
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In matrix form, Eq. (2.4) can be written:
a/*+1 = C/HJal. 2.6)

Well-polished codes exist for solving for the normal modes in quite complicated
multilayered environments. A popular technique uses a standard centered finite-difference
approximation combined with Richardson extrapolation [4]. The resulting tridiagonal
algebraic eigenvalue problem is solved using roughly 30MN, floating-point operations
where N is the number of grid points in depth and M is the number of modes calculated.
Typically, M = N,/10 so that we obtain an operation count of SNZ. An algorithm for doing
the one-way mode coupling has been incorporated in two popular implementations of the
modal algorithm (KRAKEN [5] and SNAP [6]). We refer to the one-way coupled-mode
version of SNAP as C-SNAP and will be showing results obtained with that model.
Timings and results are similar for the coupled mode version of KRAKEN.

The modes calculated by these models are provided on a finely tabulated grid of
depth points. The mth vector is then used to define the mth column of a matrix U/. For an
isodensity problem, we can then approximate the coupling matrix by the discrete form

C/ = (Ui+Ht UJ, Q.7

which is equivalent to evaluating the coupling integral by the trapezoidal rule. (For a variable
density problem this equation is slightly modified.) Substituting in Eq. (2.6) we obtain:
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We can describe the steps in this equation as follows: one advances the phase of the
coefficients to the next segment, then one sums up the modes to compute the field just to the
left of the interface and, finally, one projects the pressure field onto the mode set in the next
segment. Computing the coupling matrix would involve the calculation of the matrix-matrix
product (U)W, but when the operations are done in the order indicated by Eq. (2.8), one
performs only the operation of a matrix times a vector and, therefore, obtains a significant
savings in execution time.

Let us consider the alternative PE approach. The pressure field is represented in
terms of an envelop function as

p(x,2) = y(x,z)etkox 2.9)
where the envelope function then satisfies
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This is the standard PE originally considered by Tappert [7]. In fact, we shall be
presenting comparisons with a popular implicit finite-difference PE (IFDPE) [8] which used
a higher-order approximation to the square root operator. The PE equation is then
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discretized using a simple centered-finite difference operator. A single range-step then
requires solving a linear system and doing a matrix-vector multiply. The matrices involved
are all tridiagonal so that about 10N, floating-point operators per range step are required,
where N; is the number of points in the depth grid. The complete solution is, thus,
calculated in 10NN, operators where N, is the number of range steps.

When the normal mode problem is solved using the same centered ﬁmte—dlffcrencc
approximation, the cost of computing the modes at a single range is roughly 3N operatlons
Thus, if Nprof stairsteps are required to define the environment, the total cost is 3N Npmf
operations. (The final mode synthesis typically uses a small percentage of additional time,
although in cases where many source/receiver combinations are involved, it can dominate.)

Thus, we have

10N,N, IFDPE (2.11)

3N Nprof Normal Mode. 2.12)

For range-independent environments (Nprof= 1) where the field is desired beyond a few
water depth Ny > N, the normal mode solution is faster. For this reason, normal mode
solutions have generally been favored for range-independent environments.

However, for range-dependent environments the normal mode calculation must be
done in each segment where the environment is updated. For gradually varying
environments, a few updates suffice and the normal mode approach is significantly faster.
For strongly varying environments, it may be necessary to use a new profile every
wavelength in range. In this case, the standard PE approach is significantly faster.

The question then is: Do typical ocean environments vary enough to favor PE
solutions or coupled normal mode solutions? We can give a partial answer by considering
some example problems.

3. PROPAGATION OVER A SEAMOUNT

The environment is illustrated schematically in Figure 2. The sound speed profile is
a canonical deep water profile. Range-dependence in the problem comes from an idealized
seamount that is symmetric and extends from 80 km to 120 km and is 1000 m high. This
feature was modeled using C-SNAP with approximately 100 range-independent segments.
The resulting transmission loss is shown in Figure 3 for a source depth of 100 m and a
source frequency of 50 Hz. In order to obtain a solution which is sufficiently narrow-angled
so that the PE solution is valid, we have used a modal starting field retaining only those
modes which are waterborne; that is, turned before hitting the bottom. The field shows a
convergence zone type pattern involving a beam of energy cycling up and down the water
column. At a range of about 90 km the beam hits the seamount and reflects at steeper angles.
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We have also solved this problem using the IFDPE model and obtained a plot that is
visually indistinguishable from the coupled-mode result in Figure 3. A more quantitative
sense of the error is seen by comparing a slice form the transmission loss plot taken at a
receiver depth of 300 m as shown in Figure 4. We observe that there is excellent agreement
between the IFDPE and one-way coupled-mode solutions. The execution time for both
models is approximately half an hour on a roughly 1 megaflop machine (VAX 8600).
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Fig. 2. Schematic of the seamount problem.
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Fig. 3. Coupled mode transmission loss for the seamount problem.
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Fig. 4. Transmission loss for the seamount problem at a receiver depth of
300 m (C-SNAP (—), IFDPE (- - -)).

4. PROPAGATION OVER A CONTINENTAL SLOPE

A schematic of the environment is shown in Figure 5. This type of environment is a
prototype of continental slope propagation where the initial 500 m in range represents a
continental shelf. (This problem is a modified version of bench mark problem 5 from the
PE-II workshop [9] with the sediment layer removed to obtain a problem solvable by the
COUPLE program.)

Taking a source depth of 100 m and the source frequency of 25 Hz we obtain with
C-SNAP the transmission loss shown in Figure 6. (Approximately 30 range-independent
segments were used in this calculation.) Again, in order to accommodate the angle
limitations of the PE, we have chosen to use a narrow-angle source generated using just the
discrete modes at the origin. The field shows a somewhat complicated 4-8 mode interference
interference pattern. Once again, the IFDPE results (not shown) were indistinguishable in
terms of the grey shade plot.

Again to be precise about the level of agreement between the models, we turn to a
line plot taken at a fixed receiver depth of 150 m. This problem involves few modes so that
we can also provide an independent check using the full two-way coupled-mode solution
(COUPLE). The comparison of C-SNAP, IFDPE, and COUPLE is shown in Figure 7
showing excellent agreement between all three models. As in the previous test problem, the
one-way coupled-mode (C-SNAP) and IFDPE solutions required comparable times
(approximately 1 minute).
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Fig. 5. Schematic of the continental slope problem.
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Fig. 6. Transmission loss for the continental slope problem.
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Fig. 7. Transmission loss for the continental slope problem at a receiver
depth of 150 m [C-SNAP (—), IFDPE( - - - ), COUPLE (-~ —- )l
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5. SUMMARY AND CONCLUSIONS

We have shown that the normal mode approach offers a viable alternative to PE
modeling for range-dependent environments with run-times which, in our test problems, are
roughly comparable. A precise comparison of execution time is complicated by the fact that
it is difficult to define an error criterion which all would agree is meaningful to the user.
‘Which is more important, accuracy in the convergence zone position or in its level?
Furthermore, there are a number of parameters in each model which can be tuned to optimize
execution time (e.g., source spectrum, range and depth grids, angular width of the PE or
spectrum).

In favor of the coupled normal mode approach, we note that while work has been
done to improve PE's, little work has been done on optimizing coupled normal modes and,
indeed, there seem to be numerous possibilities for further improvement. For instance,
generalized "wedge-modes" [10] may allow for much larger range-steps.

Furthermore, the normal mode approach allows multiple source depths to be handled
with negligible additional effort since execution time is dominated by the time required to
compute the modes, a calculation which does not need to be repeated for additional depths.
This benefit is particularly important when matched-field processing is used to localize
sources by scanning over source position (see Ref. [11] and references therein).

It seems probable that there will always be a place for PE models. Circumstances
favoring their use include 1) problems with range-dependence among the entire track and 2)
problems where the field is desired on a fine range-depth grid. However, we feel that one-
way coupled mode algorithms offer many possibilities, and suitably optimized may well
prove a more desirable alternative for many ocean acoustic problems.
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