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Beam tracing is an extension of ray tracing that constructs beams around the central rays radiating

from a source. Typically, a fan of such beams is used to represent a point source and the field at any

given location is computed by coherently summing all contributing beams. On a slightly superficial

level, one points to the following key benefits: (1) improved accuracy because the beams smooth

out singularities of the ray-theoretic field, and (2) algorithmic advantages because eigenrays pre-

cisely connecting the source and the receiver do not need to be identified. One may argue about

these considerations; however, beam tracing methods have emerged as a very important class of

methods for computing ocean acoustic fields. Interestingly, the published literature has not kept up

with the numerous advances in beam tracing, including algorithmic developments that are impor-

tant to efficient and robust implementations. Furthermore, there are quite a few variants of beam

tracing algorithms with very different characteristics. This article discusses these variants, signifi-

cant advances in practical implementation, and performance characteristics. VC 2019 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5125262
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I. INTRODUCTION

Up until the 1970s, ray tracing was the most important

technique for modeling sound propagation in the ocean.

However, implementing a robust ray tracing code is surpris-

ingly difficult, and ray theory in its basic form has intrinsic

flaws such as caustics and shadow zones. Some of these

flaws may be repaired by more sophisticated asymptotic

expansions or the inclusion of complex rays. However, no

ray code emerged as a truly satisfactory implementation and

the development of parabolic equation (PE) methods created

a splash leading to an explosion of successful implementa-

tions. In addition, other full-wave approaches such as normal

mode and spectral integral techniques developed signifi-

cantly. As a result, ray methods lost favor but were never

fully forgotten—their key advantages for broadband (times-

eries) simulations and reverberation calculations were hard

to overcome in full-wave models.

As a reference example for this discussion, we consider

a canonical deep water sound speed profile due to Munk and

shown in Fig. 1. Selecting a source depth of 300 m, we

obtain the ray trace shown in Fig. 2. [Different colors have

been used to identify purely refracted paths that do not hit

the boundaries (red, dark gray in print), surface-reflected

paths (green, light gray in print), and both surface and bot-

tom reflected paths (black)]. The idea of beam tracing is to

develop a field around each of the rays that produces an

acoustic beam and then to sum up the contributions of all of

the beams to obtain the field due to a point source. Of course,

part of this process is to assign energy to each of the beams

so that the near field approximates a point source; this is

generally a simple process in all the variants of beam tracing.

It is typically done using the method of stationary phase to

estimate the level that results from a uniform weight for

each beam. However, it can also be done more precisely by

solving for the beam amplitudes so that they give the most

accurate solution at some range from the source.

In an attempt to fix some flaws of early ray models,

Bucker and Porter1 introduced perhaps the first beam tracing

code. Their technique simply attached a Gaussian pressure

distribution about each ray, with a user specified beam

width. The approach generated a lot of interest because it

could produce a notable improvement in accuracy. However,

there was no good rule or formal basis for picking the beam

width, leaving some researchers dissatisfied. Nevertheless,

this approach attained some currency. One view adopted to

justify the Gaussian beam was to imagine it as being due to

scattering effects.

In the early 1980s, Brown2 introduced the WKBJ seis-

mogram method to ocean acoustics, based on work in the

seismological community. This approach sounds very differ-

ent to beam tracing but is actually closely related in that it

uses what may be termed WKB beams to express a point

source. This is essentially the limit of infinitely wide-beams

and can produce much improved accuracy. It also avoids the

problem of identifying eigenrays. The WKBJ seismogram

was subsequently extended to range-dependent problems

and is sometimes known as the Chapman-Maslov method.

The disk (sic) ray method from Wiggins3 is also closely

related. The relation of these methods to beam tracing is sub-

tle; however, note that all of them calculate the field by

including non-Fermat paths, i.e., by integrating over a spec-

trum of wavenumbers, rather than just taking the wavenum-

ber which is the stationary point of the spectral integral.a)Electronic mail: Porter@HLSresearch.com
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Bucker continued work on Gaussian beams, trying to

provide a more formal basis. This led to an approach called

Simple Gaussian Beams, in which the beams expanded in

width according to a simple spreading formula. They also

heuristically chose to group families of rays together and

combine arrivals through a mixture of coherent and incoher-

ent summation of arrivals.

In 1982, �Cerven�y et al.4 built on earlier work and pub-

lished a pivotal paper on a new sort of Gaussian beam tracing

approach, in which the beams evolved in width and curvature

based on the underlying wave equation. The beamwidth and

curvature evolve according to another set of differential equa-

tions known as the Dynamic Ray Equations. We will refer to

this as Paraxial Beam Tracing (PBT). The paraxial beams at

first appeared very attractive, partly because they were based

on a formal theory governing their evolution. An explosion of

papers followed in the seismological literature.

However, two issues emerged. First, even though the

beam evolution was defined by the physics, the theory pro-

vided little guidance as to how to pick the initial curvature

and beamwidth used to launch the beams. Second, the beams

in their faithfulness to the physics would often become very

wide. This led to artifacts because the beam field was only

locally correct about the central ray. These two issues are

linked in the sense that if the beams were exact, rather than

paraxial solutions, then there would not be great sensitivity

to the beam initial conditions. Porter and Bucker5 imple-

mented the PBT soon after it appeared with some modifica-

tions for the ocean acoustics application. Initial results were

very encouraging. The books by �Cerven�y6 and Popov7 pro-

vide a comprehensive overview of PBT including a more

detailed history of its development.

Here, we should also mention the work of Tappert.8 This

approach—he called it HYPER (Hybrid Parabolic Equation

Ray Model)—used a full PE solution to predict the evolution

of individual Gaussian beams. However, doing so is computa-

tionally intensive and the approach was not intended to com-

pete with other beam tracing algorithms. Instead, it was viewed

as a way to develop a wide-angle PE by using narrow-angle

approximations about a discrete set of angles.

In the late 1980s, Porter continued development on

beam tracing methods.17 In particular, the following were

noted: (1) the great appeal of the beam tracing structure, (2)

that even if users were not perfectly happy with ray theory,

at least they were comfortable about when it worked well

and not, and (3) a lot of the criticism directed at ray theory

was really due to implementation faults. It was realized

that the elegant beam tracing approach could be applied to

produce a ray-theoretic solution by simply introducing

Geometric Beams whose width evolved according to the

spreading of the ray tube. Interestingly, the ray-tube spread-

ing is directly derived from the same dynamic ray equations

which govern a paraxial beam, except the initial conditions

are real. Hat-shaped beams (inspired by the finite-element

shape functions) were selected to provide a precise imple-

mentation of ray theory within the beam code. The resulting

approach was found to be highly satisfactory.

In the early 1990s, Weinberg and Keenan9 developed

GRAB (Gaussian ray bundles). The term Gaussian ray bun-

dles follows the terminology of Deschamps for a Gaussian

beam. They elected not to use the Dynamic Ray Equations

for the ray-tube spreading, instead calculating it directly by a

finite-difference formula. They also used a mixture of coher-

ent and incoherent bundling of rays similar to Bucker.

Finally, they applied what we term a “stent” to limit the min-

imum width of a beam near caustics. This approach worked

very well, and the existing code was adopted as a Navy stan-

dard. We also mention more recent work to develop imple-

mentations for Graphical Processing Units and for three-

dimensional (3D) eigenray searches.10–12

This overview has emphasized the history in ocean

acoustics and seismic wave propagation. There is also a liter-

ature in electromagnetics, optics, and architectural acous-

tics.13,14 In architectural acoustics refractive effects are often

ignored; however, this literature is interesting for its efficient

treatment of complicated reflector shapes.

We digress here for a moment to recall some key

aspects of Gaussian beams. A time-harmonic point source in

free space produces a pressure field proportional to

FIG. 1. (Color online) Deep water sound speed profile for the Munk profile.

FIG. 2. (Color online) Ray trace for the Munk profile.
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pðr; zÞ ¼ eik0R

R
; (1)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, k0 is the free space wavenumber, and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � rsÞ2 � ðz� zsÞ2

q
is the slant range from the source

at (rs, zs) to the receiver or field point at (r, z). (The time-

dependence of the form e–ixt is suppressed.) To fix ideas in a

setting relevant to our intended readership in ocean acoustics,

we consider a 50 Hz source at a depth of 3000 m and a range of

0 m. The medium is a homogenous, unbounded ocean with a

sound speed of 1500 m/s. The resulting intensity is plotted in

the form of a transmission loss in Fig. 3.

This point source solution is an exact solution to the

Helmholtz equation for any source location even if the source

location is complex. If we now move the source in range from

rs¼ 0 m to the imaginary range rs¼ 0þ i3000 m we obtain the

intensity field shown in Fig. 4 (the field has been normalized).

Thus, we see that the offset of the source into the complex

plane generates a beam, as discussed by Deschamps.15

Thus, we have a formal way of thinking about a beam as

being the signature or footprint of a point source displaced

into the complex domain. We have avoided referring to this

as a Gaussian beam because it is not identical to a

Gaussian—a Gaussian beam is instead a (very good) approx-

imation to this exact solution.

II. BEAM TRACING IN TWO-DIMENSIONS (2D)

The various types of beams are constructed around the

central rays, which satisfy16,17

dr

ds
¼ c nðsÞ; dn

ds
¼ � 1

c2

@c

@r
; (2)

dz

ds
¼ c fðsÞ; df

ds
¼ � 1

c2

@c

@z
; (3)

where c(r, z) is the ocean sound speed and [r(s), z(s)] is the

trajectory of the ray in the range–depth plane as a function

of arc-length, s. Note that the ray tangent is tray ¼ ðdr=ds;
dz=dsÞ ¼ c ðþn;þfÞ. The normal vector to the ray is then

nray ¼ c ð�f;þnÞ, which is evidently perpendicular to the

tangent.

The initial conditions are that the ray starts at the source

position (r0, z0) with a specified take-off angle a 2 [–p/2,

p/2]. Thus, we have

r ¼ r0; n ¼ cos a
cð0Þ ; (4)

z ¼ z0; f ¼ sin a
cð0Þ : (5)

The source coordinate is of course a given quantity, whereas the

take-off angle, a, is varied over discrete launch angles to convey

the energy of the source. This is solved with a discrete set of ray

takeoff angles. We define the angular spacing da since it is fre-

quently relevant in partitioning the point source energy to the

individual beams. This first-order system of ordinary differential

equations (ODEs) is integrated using a simple second-order

Runge-Kutta method. Obviously, higher-order methods may be

used; however, given the inaccuracies in the environmental

knowledge, and approximations in the soundspeed profile (SSP)

or boundary interpolation, we have not seen the benefit.

Meanwhile, the higher-order methods introduce complexities in

ensuring the rays land on interfaces and boundaries.

The methods we have described in the introduction all

involve constructing a beam around the central ray with a

pressure field in the form

Pðs; nÞ ¼ AðsÞ/ðs; nÞe�ixsðsÞ; (6)

where x is the angular frequency of the source and s(s) is

the phase delay given by

sðsÞ ¼
ðs

0

1

cðs0Þ ds0: (7)

Here, s is arc-length along the central ray, c(s) is the sound

speed, and n(s) is the normal distance from the receiver to

the central ray of the beam. The shape of the beam is defined

by A(s) and /(s, n). The functions depend on the type of

beam selected as described in the following subsections.

FIG. 3. (Color online) Intensity field due to an isotropic point source.

FIG. 4. (Color online) Beam generated using a complex source point.
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It is usually not an important issue; however, this coor-

dinate system has a zone of regularity around the central ray

where a receiver point has a well-defined ray-centered coor-

dinate. For some receiver points there is more than one nor-

mal from the ray to the receiver. For instance, if the ray is a

circular arc, then radials from the center of the circle are all

valid normals.

A. PBT

The paraxial beam is defined by

/ðs; nÞ ¼ e�0:5ix pðsÞ=qðsÞ½ �n2

; (8)

AðsÞ ¼ da
cð0Þ e

ip=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x cos a

2p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞqð0Þ

rqðsÞ

s
; (9)

where da, as mentioned above, is the angular spacing between

discrete rays at the origin and r is the cylindrical range. In addi-

tion, p(s), q(s) satisfy the dynamic ray equations

dq

ds
¼ c pðsÞ; dp

ds
¼ � cnn

c2ðsÞ qðsÞ: (10)

Here, cnn is the derivative of the sound speed in a direction

normal to the ray path. Written in terms of range and depth

derivatives

cnn ¼ c2 @2c

@r2
f2 � 2

@2c

@r@z
fnþ @

2c

@z2
n2

� �
; (11)

where c� (n, f) is the ray tangent as defined above. This cur-

vature of the sound speed in the direction normal to the ray

characterizes whether the beam is focusing or defocusing.

A little analysis of this beam reveals that p(s) and q(s)

control the beam width W(s) and curvature K(s),

WðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

x Im pðsÞ=qðsÞ½ �

s
; (12)

KðsÞ ¼ �cðsÞRe pðsÞ=qðsÞ½ �: (13)

Thus, we can select initial conditions for the paraxial beams

in terms of their initial beamwidth and curvature and then

convert them to the equivalent p(0) and q(0). Note that the

resulting initial conditions are in general complex. A choice

of the form

qð0Þ ¼ i�; pð0Þ ¼ 1; (14)

with � real creates a beam with no curvature at the origin,

which is a common choice. The value of � then controls the

initial beam width, which is a free parameter in the PBT. As

discussed above, it is desirable to maintain narrow beams so

that the beam field is weak outside the region of validity of

the paraxial approximation. However, if the beam is made

too narrow at the origin then it expands rapidly.

The resulting p(s) and q(s) are also complex. Since q(s)

appears as an argument of the square root, it is important to

track crossings of its branch cut to maintain a continuous

phase variation. The number of crossings is the so-called

KMAH index, and it depends on the initial conditions used

in the p – q equations. In the case where q(s) is real, the

phase changes correspond to points where the ray crosses a

caustic.

B. Geometric beams (hat)

The initial conditions of the dynamic ray equations

determine the type of ray perturbation. If we take

qð0Þ ¼ 0; pð0Þ ¼ 1; (15)

then q(s) describes the spreading of the ray tube (because it

represents a derivative with respect to launch angle). To con-

struct a hat-shaped beam we set

/ðnÞ ¼
WðsÞ � n

WðsÞ for n � WðsÞ

0 else;

8><
>: (16)

where,

WðsÞ ¼
���� qðsÞ da

cð0Þ

����: (17)

The formula for the amplitude of the ray is

AðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a

r

cðsÞ
qðsÞ

s
: (18)

Note that the ray-tube spreading function q(s) appears

proportionally in the width and inversely in the amplitude.

As with the paraxial beams, the square root leads to a branch

cut and the KMAH index needs to be calculated. However,

with the geometric beams, q(s) is real, and the caustics occur

where q(s) vanishes. The singularities can be removed by

putting a lower limit on the beam width. However, we gener-

ally use this beam type to faithfully reproduce the ray theo-

retic result and therefore all the beam widths to vanish at

caustics.

For the free space problem with a constant sound speed

of c0, cnn¼ 0 and then the p – q equations with initial condi-

tions are trivially integrated to yield

qðsÞ ¼ c0s: (19)

The term q(s) represents the spread of the geometric beam due

to perturbations in the declination angle. We see that it

expands in proportion to arclength, s, as one requires. Further,

from the definition of W(s) above, we get

WðsÞ ¼ s da; (20)

verifying that the beams precisely fill the wedges formed by

adjacent rays.

Substituting in the equation for A(s) and noting that

r ¼ s cos a in free space, we can see that A(s)¼ 1/s providing

the expected spherical spreading.
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C. Geometric beams (Gaussian)

Geometric beams with a Gaussian shape are given by

/ðs; nÞ ¼ e�1=2 n=WðsÞð Þ2 ; (21)

AðsÞ ¼ 1ffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos a

r

cðsÞ
qðsÞ

s
; (22)

where W(s) is the geometric width of the beam. Note that the

coefficient A(s) has been reduced by a factor of
ffiffiffiffiffiffi
2p
p

since

the sum or integral of the Gaussian beams has the form

1

c

ð1
�1

e�1=2 n=cð Þ2 dn ¼
ffiffiffiffiffiffi
2p
p

: (23)

Typically, we apply a “stent,” i.e., a lower limit on the

beamwidth to eliminate singularities at caustics. These vari-

ous types of beams are implemented in the BELLHOP17

model, which is used in the following test cases.

A comparison of the different beam types is shown in

Fig. 5 for a source frequency of 50 Hz and a source depth of

300 m. In sequence from the top subplot we have (a) a geo-

metric hat beam, (b) a geometric Gaussian beam, (c) a para-

xial beam, and (d) an exact beam field calculated using the

complex source point method together with wavenumber

integration. A point source would then be expressed as a

weighted sum of these beam. Thus, these beam fields can be

scaled by an arbitrary constant, which changes only the

weighting factors used in that expression of the point source.

Note that the geometric beams (Gaussian or hat-shaped)

assume a vanishing width at the location of caustics, e.g., at a

range of about 55 km. It can be shown formally that the para-

xial beam is free from such effects. However, the paraxial
approximation cannot precisely capture the full wave effects of

an exact solution. For instance, one can see that the complex

source point solution shows the field is not perfectly Gaussian.

On the other hand, the exact solution is not a practical general

alternative as it is not competitive in run time, especially for

broadband or high-frequency applications.

The final step in the beam tracing model is to coherently

sum the fields of the individual beams to approximate the

source (typically a point source). Figure 6 shows the result-

ing transmission loss using geometric hat beams (upper

FIG. 5. (Color online) Transmission

loss for the Munk profile using a (a)

geometric hat beam, (b) geometric

Gaussian beam, (c) paraxial beam, and

(d) a spectral integral solution

(“exact”).
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subplot). This may be compared to the exact spectral integral

solution (lower subplot). Differences in the near field are due

to the fact that the omnidirectional source has been filtered

in angle to 618� and the filtering has different effects in the

two different representations. Generally the agreement is

excellent even at this low frequency of 50 Hz.

III. BEAM TRACING IN 3D

The extension of Gaussian beams to 3D is described in

previous work16,18,19 and requires fairly minor modifications

to the 2D algorithm. Let us go through the three steps

required for constructing the beam solution. As usual, we

begin by tracing a set of rays; however, in the 3D case, the

rays form a fan over both declination angle, a, and azimuthal

angle, b. The ray equations in 3D are given by

dx

ds
¼ cnðsÞ; dn

ds
¼ � 1

c2

@c

@x
; (24)

dy

ds
¼ cgðsÞ; dg

ds
¼ � 1

c2

@c

@y
; (25)

dz

ds
¼ cfðsÞ; df

ds
¼ � 1

c2

@c

@z
; (26)

where c(x, y, z) is the ocean sound speed and [x(s), y(s), z(s)]

is the ray trajectory. Note that the ray tangent is tray ¼ ðdx=
ds; dy=ds; dz=dsÞ ¼ c ðn; g; fÞ.

The initial conditions prescribe that the rays emanate

from the source position (xs, ys, zs) and with take-off angles

a and b corresponding to the declination angle and the azi-

muthal angle of the ray

xð0Þ ¼ xs; n ¼ 1

cð0Þ cos a cos b; (27)

yð0Þ ¼ ys; g ¼ 1

cð0Þ cos a sin b; (28)

zð0Þ ¼ zs; f ¼ 1

cð0Þ sin a: (29)

As in the 2D case, the system of ODEs is readily solved

using standard numerical techniques.

The Gaussian beam is constructed around a central ray

and defined in terms of ray-centered coordinates (s, m, n),

where s is the arc-length along the ray, and (m, n) are normal

distances from a field point to the central ray. To be specific,

m, n are defined as distances in the direction of the following

two normal vectors to the ray

e1 ¼
e1x

e1y

e1z

2
664

3
775 ¼

L�1 cnf cos /þ g sin /½ �
L�1 cgf cos /� n sin /½ �

cL cos /

2
664

3
775; (30)

and

e2 ¼
e2x

e2y

e2z

2
64

3
75 ¼

L�1 cnf sin /� g cos /½ �
L�1 cgf sin /þ n cos /½ �

�cL cos /

2
664

3
775; (31)

where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

p
. (These formulas are derived in the

paper by �Cerven�y and Hron.20) This ray-centered coordinate

system ðtray; e1; e2Þ is a rotating trihedral with rotation angle

satisfying the differential equation

FIG. 6. (Color online) Transmission

loss for the Munk profile with a point

source using (a) geometric hat beams,

(b) a spectral integral solution.
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d/
ds
¼ 1

cðsÞ
fðgcx � ncyÞ

n2 þ g2
: (32)

The coordinate system defined by the rotating trihedral

has special properties. As discussed by Popov,21 we can use

Hamilton’s Principle to derive equations that characterize

how a ray displaces as we make infinitesimal changes to its

original position or take-off angles. These equations are sur-

prisingly simple. Furthermore, the way the ray displaces

characterizes the spreading of the ray tube and therefore the

intensity along the central ray. The beams are defined in

terms of functions

p ¼
p1

p2

" #
;

q ¼
q1

q2

" #
;

which are calculated by integrating an additional system of

differential equations

dp

ds
¼ � 1

c2
Cq;

dq

ds
¼ cp; (33)

where C is a matrix of second derivatives of the sound speed

C ¼
cnn cnm

cmn cmm

" #
:

Here, cm and cn denotes the partial derivative of the sound

speed in directions e1 and e2, respectively. We assume that

the mixed partials cmn and cnm satisfy the continuity require-

ments (in subdomains bounded by interfaces) for them to be

equal. These normal derivatives may be expressed in terms

of derivatives in the original Cartesian coordinates as

cnn ¼ cxxe2
1x þ cyye2

1y þ czze
2
1z þ 2cxye1xe1y

þ2cxze1xe1z þ 2cyze1ye1z;

cmn ¼ cxxe1xe2x þ cyye1ye2y þ czze1ze2z

þcxyðe1xe2y þ e2xe1yÞ þ cxzðe1xe2z þ e2xe1zÞ
þcyzðe1ye2z þ e2ye1zÞ;

cmm ¼ cxxe2
2x þ cyye2

2y þ czze
2
2z þ 2cxye2xe2y

þ2cxze2xe2z þ 2cyze2ye2z: (34)

The p� q differential equation tells us how the ray is

perturbed due to a change in the ray initial condition (either

by displacing the source position or changing the ray angle).

To obtain Gaussian beams, we construct two linearly inde-

pendent solutions

P

Q

� �
¼

~p1 p̂1

~p2 p̂2

~q1 q̂1

~q2 q̂2

2
6664

3
7775; (35)

generated using the initial conditions

~p1ð0Þ p̂1ð0Þ
~p2ð0Þ p̂2ð0Þ
~q1ð0Þ q̂1ð0Þ
~q2ð0Þ q̂2ð0Þ

2
66664

3
77775 ¼

1 0

0 1

�1 0

0 �2

2
66664

3
77775; (36)

where �1,2 are the beam constants that control the initial

beam widths in the two normal directions to the ray. The real

and imaginary parts of �1,2 allow independent control of both

the beam width and the beam curvature (that is, the curvature

of its wavefronts).

Once we have integrated these equations along the ray,

we form a Gaussian beam as

ubeamðs;m; nÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
jQðsÞj

p e�ix sðsÞþ1=2ðdtCðsÞdÞ½ �; (37)

where C is a 2� 2 matrix

C ¼
~p1q̂2 � p̂1 ~q2 �~p1q̂1 þ p̂1 ~q1

~p2q̂2 � p̂2 ~q2 �~p2q̂1 þ p̂2 ~q1

" #,
jQj; (38)

jQj ¼ ~q1q̂2 � q̂1 ~q2 is a determinant (not an absolute value)

and d¼ (m, n)t is the distance vector.

Since jQðsÞj appears as an argument of the square root,

it is important to track crossings of its branch cut to maintain

a continuous phase variation. These crossings are the so-

called KMAH index as described earlier for the 2D case.

A. Compound matrix formulation

It commonly occurs that one is solving a system of ODE

with different initial conditions to assemble a final solution

that involves determinants of the resulting independent solu-

tions. We see this here in the definition of the C matrix. In

such cases, one can do some simple manipulations to derive

a new set of ODE that is solved with just one set of initial

conditions to yield the determinants directly. This is some-

times called the compound matrix method or the D-matrix

formulation. There is typically a redundant equation that can

be eliminated leading the to the so-called reduced D-matrix

formulation. An advantage of this approach is that it yields a

simpler and faster algorithm.22

To derive the new system, we first arrange the original

ODE from a matrix to a vector form as follows:

p1

p2

q1

q2

2
66664

3
77775

0

¼

0 0 �cnn=c2 �cnm=c2

0 0 �cmn=c2 �cmm=c2

c 0 0 0

0 c 0 0

2
66664

3
77775

p1

p2

q1

q2

2
66664

3
77775; (39)

where the prime denotes the derivative with respect to arc

length. Next, we consider two independent solutions for the

p – q vector using tildes for one solution and hats for the

other solution as introduced in Eq. (35). We then assemble

those two column vectors into a matrix and construct a new
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vector consisting of all the principal minors of that matrix.

Note that those principal minors correspond to all the ele-

ments in the beam field above

~p1 p̂1

~p2 p̂2

~q1 q̂1

~q2 q̂2

2
66664

3
77775!

~p1p̂2 � ~p2p̂1

~p1q̂1 � ~q1p̂1

~p1q̂2 � ~q2p̂1

~p2q̂1 � ~q1p̂2

~p2q̂2 � ~q2p̂2

~q1q̂2 � ~q2q̂1

2
6666666664

3
7777777775
¼

jPj
�C12jQj
þC11jQj
�C22jQj
þC21jQj
jQj

2
6666666664

3
7777777775

¼

P

�h

þf

�g

þh

Q

2
6666666664

3
7777777775
: (40)

Here, we have introduced new variables, P, Q, f, g, h for

conciseness. We then differentiate the vector on the right

hand side with respect to arclength and use the p – q differ-

ential Eq. (39) to simplify the result. This gives the following

system of differential equations:

dP

ds
¼ 1

c2
ð�cmmf þ 2cmnh� cnngÞ; (41)

dQ

ds
¼ cðf þ gÞ; (42)

df

ds
¼ cP� 1

c2
cnnQ; (43)

dg

ds
¼ cP� 1

c2
cmmQ; (44)

dh

ds
¼ � 1

c2
cmnQ; (45)

where a redundant differential equation for h has been

dropped. This differential equation is solved with the initial

conditions

ðP;Q; f ; g; hÞ ¼ ð1; �1�2; �2; �1; 0Þ: (46)

This follows immediately by substituting the initial condi-

tions in Eq. (36) into the definitions of P, Q, f, g, h.

The resulting field for the beam can then be calculated as

ubeamðs;m; nÞ

¼ Affiffiffiffiffiffiffiffiffiffi
QðsÞ

p � exp �ix sðsÞ
��

þ f ðsÞn2 þ 2hðsÞmnþ gðsÞm2

2QðsÞ

�	
: (47)

The main appeal of this formulation is didactic—it

allows one to present beam tracing as a simple process of

solving an extra system of ODEs along the central ray. In

contrast, the earlier formulation requires a system to be

solved with two sets of initial conditions and then to form a

beam as a linear combination of the basis beams.

B. Interfaces

An interface is defined here as a curve across which the

sound speed or its derivative is discontinuous. The most

important of these are the ocean boundaries. These perhaps

should not be considered interfaces, but if we view the

reflected field as simply an image of the incident field, then

we can equate it with a direct ray that has crossed through

from the other side. Therefore, it sees a jump in the gradient

of the sound speed that is double the gradient at the bound-

ary. The formulas for interfaces and boundaries are essen-

tially the same. The other important interfaces are those

associated with the oceanography. Our beam tracing model

allows various piecewise approximations to the sound speed,

e.g., piecewise linear in depth and in range. These lead to so-

called weak discontinuities, that is, discontinuities in the

derivative of the sound speed (where the sound speed itself

is continuous).

As beams cross such interfaces they change. If the sound

speed and density are continuous, there is no change in the

intensity of the beam; however, the curvature of the phase

fronts of the beams changes. These changes are agnostic to

the rotating trihedral. That is to say, the curvature change is

directly related to the shape of the beam in the reflection

plane. The reflection plane is formed by the tangent ray and

the normal to the interface (both are contained in the reflec-

tion plane). Therefore, we must convert the representation of

the beam from its coordinate system involving the rotating

trihedral to the coordinate system of the reflection plane

before converting it. Then, after the interaction with the

interface, we need to convert it back to the coordinate system

of the rotating trihedral.

The curvature change formulas23,24 involve a new coor-

dinate system in the reflection (or transmission plane). This

is defined by the ray tangent, together with two normal vec-

tors to the ray. The first of these normal vectors must be in

the reflection plane and the second is normal to the reflection

plane. Getting the signs right in all these equations is diffi-

cult because the signs of normal vectors to the boundaries

and the rays need to be carefully defined. For boundary

reflection, the normal to the reflection plane is given by

nReflPlane ¼
�tray � nbdry

k tray � nbdry

k :

Taking the cross-product of the ray tangent and this normal

to the reflection plane yields the other normal to the ray that

is in the reflection plane

n1 ¼ tray � nReflPlane; (48)

and the second normal is

n2 ¼ tray � n1: (49)

Then, to express the p’s in the new coordinate system,

we transform as follows:
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p̂

~p

" #0
¼

e1 � n1 e2 � n2

e2 � n1 e2 � n2

" #
p̂

~p

" #
; (50)

which can be written

p̂

~p

" #0
¼

cos h sin h

�sin h cos h

" #
p̂

~p

" #
; (51)

where the prime denotes here the values of p in the new

coordinate system and

h ¼ arccosðe1 � n1Þ: (52)

The same transformation is applied to the q’s.

Now that we have the representation of the p’s and q’s

in the new coordinate system, we apply the curvature change

formulas.23,24 The correct jump conditions are

~p½ � ¼ �~qR1 � q̂R2;

p̂½ � ¼ ~qR2; (53)

where

R1 ¼
2

c2
tan a

c1

c

� �
� tan2a

c2
cs½ �;

R2 ¼
tan a

c

c2

c

� �
;

R3 ¼ R2; (54)

and a is the angle of incidence. In addition, [c1], [c2], [cs] refer

to the jump in the derivatives of the sound speed across the

interface (s for the derivative along the ray, 1, 2, for the deriva-

tives in the two normal directions). The final step is to convert

the p’s and q’s back into the ray-centered coordinate system.

These formulas are also applied for boundary reflection;

however, as noted above, the jumps in the derivatives of the

sound speeds are doubled and the sign of a is flipped. They

are also directly applicable to the compound matrix formula-

tion by substituting the jump formulas into the P, Q, f, g, h
definitions of that formulation.

C. Geometric beams in 3D

Our presentation of paraxial beams above is mostly a

review of the existing literature. However, the formulas for

the paraxial beams are the basis for geometric beams. On a

historical note (considering only 3D ocean acoustics applica-

tions here), the first beam tracing code was based on Simple

Gaussian Beams.1,25 The first implementation of PBT is

described by Porter and Bucker.22 Reilly et al.26 did an

implementation based on Gaussian ray bundles.

To generate beams that spread geometrically we use the

initial conditions

~p1ð0Þ p̂1ð0Þ
~p2ð0Þ p̂2ð0Þ
~q1ð0Þ q̂1ð0Þ
~q2ð0Þ q̂2ð0Þ

2
6664

3
7775 ¼

1 0

0 1

0 0

0 0

2
6664

3
7775: (55)

Here, the initial conditions for q all vanish since we want to

solve the ray equations with perturbations in the launch

angle rather than the source coordinate. This also implies the

beamwidth vanishes at the origin in correspondence with the

ray tube launched from a point source. Then the initial con-

ditions for p are chosen arbitrarily to generate two linearly

independent solutions. The 3D equivalent of the hat-shaped
beam has the following shape function

Wðm; nÞ ¼ ð1� aÞð1� bÞ for jaj < 1 and jbj < 1

0 else;

(

(56)

where

Q
a

b

" #
¼ m

n

" #
; (57)

implying

aðm; nÞ ¼ da
cð0Þ jq̂1m� q̂2nj=jQj;

bðm; nÞ ¼ jcos aj db
cð0Þ j~q1m� ~q2nj=jQj: (58)

Thus, the (m, n) coordinate of the receiver is projected onto

a coordinate system defined by q̂1; q̂2; ~q1; ~q2. These quanti-

ties represent perturbations or derivatives of the ray position

with respect to the two launch angles and thus define the

cross-section of the ray tube. The extra factor of j cos aj in

b(m, n) accounts for the narrower width of an azimuthal cell

for rays launched at steeper declination angles. The resulting

beam has a pyramidal shape with a parallelogram base.

For a homogeneous point source in free space, we want

the beam sum to add up to the eik0s=s, where s is the spherical

range. (The field is normalized so that it has unit magnitude

at s¼ 1 and then the transmission loss is simply 20 log10 of

the field. Thus, we set

AðsÞ ¼ cðsÞ
cð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jQðsÞj

p : (59)

Note that for the free space problem, cmm¼ cmn¼ cnn¼ 0

and then the p – q equations with initial conditions are trivi-

ally integrated to yield

~q2ðsÞ ¼ q̂1ðsÞ ¼ 0;

~q1ðsÞ ¼ q̂2ðsÞ ¼ c0s: (60)

The term ~q1 represents the spread of the geometric beam due

to perturbations in the declination angle. We see that it

expands in proportion to arclength, s, as one requires.

Similarly, q̂2 represents the spread due to perturbations in

the azimuthal angle.

Substituting in the equation for A(s) we can see that

A(s)¼ 1/s as expected.

For the geometric Gaussian beam, we use the shape

function
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Wðm; nÞ ¼ e�0:5 a2þb2ð Þ
: (61)

The coefficient A(s) is then reduced by a factor of 2p since

the sum or integral of the Gaussian beams has the form

1

cd

ð1
�1

ð1
�1

e�1=2 n=cð Þ2þ m=dð Þ2½ �dm dn ¼ 2p: (62)

These various types of beams are implemented in the

BELLHOP3D19 model, which is used in the following 3D

test cases.

IV. 3D TEST CASES

A. Perfect wedge

The name “perfect” wedge is suggested by its perfectly

reflecting boundaries. It is an idealization of a continental

slope environment that provides a problem readily solved by

separation of variables as discussed by Bradley and

Hudimac27 and, in an improved form by Buckingham.28 An

experiment was also conducted to observe the horizontal

refraction.29

In our specific case, we consider a wedge angle of

h0¼ 1.2� with a vacuum (pressure release) boundary condi-

tion. The apex of the wedge is at y¼ 0 so the bottom depth is

z ¼ tan h0 as shown in Fig. 7. The 10-Hz source has been

placed at (xs, yz, zs)¼ (0, �19 100, 8) m and the receiver at a

depth of 80 m. The sound speed in the ocean is set to

1500 m/s.

Figure 8 compares the beam tracing result (upper panel)

to the analytic solution (lower panel). The results are in per-

fect agreement apart from a region near the apex where the

beams are wide in relation to the water depth. It is also possi-

ble that the numerical integration in the “analytic” solution

is inaccurate in this zone. The patterns that emerge are

understood in terms of wedge modes that solve the

Helmholtz equation in the separate angle coordinate (mea-

suring the declination angle). Each such mode generates a

fan of rays with a hyperbolic envelope. Buckingham28 pro-

vides details.

The beam tracing results were done using the geometric

hat-shaped beams that do not provide any significant caustic

correction. It is interesting to note that despite the lack of a

caustic correction, the beam tracing results agrees precisely

with the analytic solution near the caustics. This apparent con-

tradiction is due to the fact that the caustic in the analytic repre-

sentation is based on an interpretation of the field in terms of a

wedge mode and a horizontally refracted ray—this is a 2D ray

fan. The beam solution involves a 3D fan of rays and the caus-

tics of the two ray systems are in general not the same.

B. Truncated wedge

The truncated wedge is a step up in realism encompass-

ing both a continental shelf transitioning to a continentalFIG. 7. (Color online) Bathymetry and ray trace or the perfect wedge.

FIG. 8. (Color online) Transmission loss for the perfect wedge (a) beam

tracing, (b) analytic.
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slope and then a flat area in deeper water as shown in Fig. 9.

The flat zones are convenient in that they avoid reflections at

the edges of the x–y domain. The sub-bottom is a homoge-

neous medium with sound speed of 1700 m/s, density of

1.5 g/cm3, and attenuation of 0.5 dB/wavelength. The 25-Hz

source has been placed at (xs, ys, zs)¼ (0, 0, 40 m) and the

receiver at a depth of 30 m. The sound speed in the ocean is

set to 1500 m/s. This case was developed by Sturm30 as a

test for his 3D PE model.

Figure 10 compares the beam tracing solution (upper

panel) to Sturm’s PE result (middle panel) incorporating

cross terms.31 The agreement is generally excellent; how-

ever, we see some small discrepancies in the interference

pattern. There are approximations inherent in both types

of models—the beam tracing solution does not handle

exactly the diffractions where the bottom derivative is

discontinuous. The PE solution assumes outgoing propa-

gation and neglects some terms in the square root

approximation.

There is no simple analytic formula for the field; how-

ever, reference solutions can be calculated using a Fourier

transform in the x-direction together with standard methods

in the y–z plane. Abawi32 used this approach with the virtual

source method for the y–z plane to obtain the result in the

lower panel. (The acoustic field was scaled by a factor of 2

to align with the transmission loss.)

C. Double seamount

The double seamount case was developed by Y. T. Lin

as an extension of the single seamount example33 for testing

a 3D Split-Step Fourier (SSF) PE. The bathymetry is shown

in Fig. 11. The seamounts are located at (x, y)¼ (3500,

1000 m) and (x, y)¼ (3500, �1000 m) and rise to a depth of

200 m. They are given a radius of 2500 m and a slope of

0.25. Beyond that radius the seafloor is flat. The ocean

soundspeed is set to 1500 m/s. The sub-bottom is a

homogeneous medium with sound speed of 1650 m/s, den-

sity of 1.5 g/cm3, and attenuation of 0.5 dB/wavelength. The

100-Hz source has been placed at (xs, yz, zs)¼ (0, 0, 250 m)

and the receiver at a depth of 400 m.

Figure 12 compares the beam tracing solution to the 3D

SSF PE solution. The agreement is generally excellent. It

should be noted that the beam tracing model does not pro-

vide useful results in the sub-bottom since beams are not

traced into that domain. As in the previous case, there are

approximations in both the beam tracing and PE models, so

it is hard to know which of these solutions is more accurate.

However, if the discrepancy between the two can be inter-

preted as an error bar, one would conclude that both models

are providing a very accurate solution.

D. Taiwan seas

The above test cases are all idealizations that facilitate

inter-model comparisons. However, the beam tracing model

has been developed for realistic scenarios that contain com-

plicated oceanographic and bathymetric variation. To illus-

trate this capability we consider a location off Taiwan.

Oceanographic information is readily available from

public sources such as HYCOM. The salinity and tempera-

ture fields were downloaded for a particular date and con-

verted to sound speed. A slice at a depth of 50 m is shown in

Fig. 13. The ocean SSP is supplied to the model as a 3D

array of values on a rectilinear (hexahedral) grid. Similarly,

bathymetry is also readily available from public sources and

is supplied to the model as a 2D array of depths on a rectilin-

ear grid.

With this information, the beam tracing model can pro-

duce the ray trace for a grid of source locations as shown in

Fig. 14. Here, the rays are launched in bearing angles corre-

sponding the four compass points (north, south, east, west)

and cover a fan of declination angles. The resulting transmis-

sion loss plots for a receiver depth of 500 m and each of the

source locations are shown in Fig. 15. The source frequency

for these calculations is 250 Hz. The model calculates trans-

mission loss on a 3D grid in cylindrical coordinates; the

resulting array can be sliced in bearing or depth to provide

suitable displays.

These results provide some insights into when 3D

effects (horizontal refraction) matter. The ray traces in

Fig. 14 show that the rays for most of the source locations

stay close the bearing angle in which they were launched,

i.e., there is little horizontal refraction. On the other hand,

one can clearly see the horizontal refraction in the ray

trace for the source nearest the origin (near the southern

tip of Taiwan). The deviation out of the launch plane

tends to increase with range. Thus, the two-word answer

to the question of whether horizontal refraction matters is

“it depends.” More subtly, it depends on how the sound

field is analyzed. For instance, the 3 D effects are often

less important in a transmission loss plot than a bearing

angle plot. The latter is, for example, relevant to towed

arrays.

FIG. 9. (Color online) Schematic of the truncated wedge.
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V. CONCLUSIONS

The examples presented above are a subset of a broader

set of test cases that have been used to benchmark the beam

tracing models in both 2D and 3D. Information on these

other cases may be found on the Ocean Acoustics Library.

These tests involve comparison of the 2D model to other

full-wave solutions to the Helmholtz equation as well as

comparisons of the 3D and 2D beam tracing results in cases

where there is no horizontal refraction. Additional tests

have been done to verify that gradients in the x–y direction

produce the same results as gradients in the z direction.

These results provide a sanity check on the implementation

but are not otherwise enlightening and therefore have been

omitted.

Ray and beam tracing models are typically based on

high-frequency asymptotics leading to the inevitable ques-

tion of how high the frequency has to be to ensure accurateFIG. 11. (Color online) Bathymetry and ray trace for the double seamount.

FIG. 10. (Color online) Transmission

loss for the truncated wedge using (a)

beam tracing, (b) 3D PE (plotted as log

of the intensity, i.e., negative of TL),

and (c) Fourier Transform in x with

virtual source method in the y–z
direction.
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results. This is a very subtle question to which there is no

easy answer and, of course, the accuracy threshold

depends on the application. A popular rule-of-thumb is

that there should be more than ten wavelengths in depth.

However, one should note the excellent results obtained

here at very low frequencies. On the other hand, it is also

known that the ray/beam methods (at least with central

rays that are real) can be inaccurate when surface ducts are

present, and the wavelength is not much smaller than the

dimension of the surface duct. So, ray/beam tracing meth-

ods can be accurate at very low frequencies (and indeed

are exact for the flat-bottom isovelocity case with perfect

boundaries). However, they tend to be more attractive for

broadband or higher-frequency problems where there are

few alternatives.

FIG. 12. (Color online) Transmission loss for the double seamount (a) beam

tracing, (b) PE.

FIG. 14. (Color online) Bathymetry and ray trace for the Taiwan case.

FIG. 15. (Color online) Transmission loss for the Taiwan case.

FIG. 13. (Color online) Oceanography for the Taiwan case.
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