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The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from
a linearized forward propagation model to propagate data-model misfit at the observation points
back through the medium to the medium perturbations not being accounted for in the model. This
adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint
methods are being applied to a variety of inversion problems, but have not drawn much attention
from the underwater acoustic community. This paper presents an application of adjoint methods to
acoustic inversion. Inversions are demonstrated in simulation for both range-independent and
range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity
and error analyses are discussed showing how the adjoint model enables calculations to be
performed in the space of observations, rather than the often much larger space of model parameters.
Using an adjoint model enables directions of steepest descent in the model parameters~what we
invert for! to be calculated using far fewer modeling runs than if a forward model only were
used. © 2004 Acoustical Society of America.@DOI: 10.1121/1.1636760#
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I. INTRODUCTION

This paper investigates the use of adjoint modeling
acoustic inversion. Typically, in inversion problems a fo
ward model driven by presumed medium properties is u
to propagate a field from the source to the observation po
where the field predicted by the forward model is compa
with the measured field there. The actual medium is
known and is typically a perturbation of the presumed m
dium, to be calculated by an inversion process so that s
sequent forward modeling can be improved. If the proper
of the medium used to drive the forward model match
actual medium properties, then the data-model misfit at
observation points is small. If not, these presumed med
properties are adjusted and the forward modeling repe
until the data-model misfit has been reduced. Note that
emphasis in this process is on the mapping from the
known medium properties to the observations, when it is
medium properties that we want to estimate. What we re
want is some way to propagate the data-model misfit fr
our observation points directly back to the points in the m
dium where we need to make adjustments. This is wha
adjoint model does. It back-propagates an adjoint field,
tialized to the data-model misfit at the observation poin

a!Portions of this work were presented in ‘‘Adjoint-assisted inversion
shallow water environmental parameters,’’ Proceedings of the Confer
on Acoustic Variability, 16–20 September 2002, Lerici, La Specia, Ita
Impact of Littoral Environmental Variability on Acoustic Predictions an
Sonar Performance, edited by N. G. Pace and F. B. Jensen~Kluwer, Dor-
drecht, 2002!. Portions of this work were also presented at the 142
Acoustical Society Meeting, 3–7 December 2001.

b!Electronic address: paul.hursky@saic.com
J. Acoust. Soc. Am. 115 (2), February 2004 0001-4966/2004/115(2)/6
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back to the points in the medium where a correction to
presumed medium properties can be made to reduce the
model misfit.

An adjoint model has particular relevance to inversi
problems in which the unknown parameter space is m
greater than the observation space. Methods based on ad
models have been used in geophysical inversion,1 electro-
magnetic tomography2 and oceanography.3–5 An adjoint ap-
proach to acoustic inverse scattering problems has also
explored, on a theoretical level, with emphasis on variatio
methods.6 Other recent work in acoustics includes using a
joint methods to invert for bottom boundary conditions in t
ocean waveguide7 and using an adjoint approach with no
mal modes to compute derivatives with respect to envir
mental parameters.8 In this paper we show how the techniqu
can be used to invert for medium properties in underwa
acoustic problems, demonstrating an adjoint-based inver
for range-independent and range-dependent sound speed
files.

To understand the benefits of the approach for acou
inversion, it is useful to review the commonly used altern
tives. A standard approach is to minimize a cost function t
measures the difference between forward solutions o
model and observations. The most direct, brute force met
is sometimes called ‘‘iterated solution of the forward pro
lem:’’ one minimizes the cost function through an exhaust
search. While this method can be used for multi-parame
inversions the computational burden can be quite large.
instance, if there are 10 parameter values each sampled
values, then the search involves 1020 runs of the forward
problem. Hence, nonlinear methods involving a more stra
gic search such as simulated annealing,9 genetic algorithms10

and others11 have emerged as more practical alternatives

r
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all of these forward solution techniques, the cost of runn
the forward model becomes the central factor. If the probl
is only mildly nonlinear, a first attempt at decreasing this c
is to consider perturbations from known solutions so that
full cost of a massive forward search is avoided. Linear
proximations to the sound pressure equation~as a function of
medium properties! have been used in acoust
tomography.12,13 Even with this approach, computing th
perturbations over the full multi-parameter space remains
dominant, limiting factor.

Solutions to inverse problems in ocean acoustics usu
includea priori information, such as gross knowledge of t
ocean environment. For example, the sound speed is
cally close to 1500 m/s. In some cases the starting gue
close enough to the true solution that we are within
multi-dimensional bowl of the cost function that contains t
global minimum~unfortunately, it is rarely close enough fo
a linear inverse to work!. When this occurs, it is useful to
know the gradient of the cost function with respect to t
large number of unknown parameters so as to guide us to
minimum. This gradient can be obtained by operating on
data-model misfit by the adjoint of the forward proble
operator.1,6 When the number of unknown parameters
much greater than the number of observations, the adj
approach can be a less costly method of calculating the
dient than running the forward model for each variation
the unknown parameters.

For completeness, we mention that the derivative o
function mapping one normed vector space to another~e.g.,
sound speed versus range and depth to complex pres
amplitude across an array at a given frequency! is called a
Fréchet derivative,14 often mentioned as the key compone
of the inverse procedure. The adjoint method provides a p
cedure to compute the Fre´chet derivative.1,6,15Adjoint meth-
ods also have an extensive earlier history in control the
where they are derived from the Pontryagin principle.14,16–18

Although we pursue a different approach in this paper,
adjoint operator can be derived by applying variational te
niques to minimize an objective function that includes t
data-model mismatch and the differential equations that
scribe the forward model being used, using Lagrange mu
pliers to set the constraint that the dynamical model is p
fect. This produces the Euler–Lagrange equations, which
integrated by parts to reveal the adjoint operator and
boundary conditions that it must satisfy.1,6,7,19Adjoint meth-
ods have also been compared to the filtered back-propag
technique in diffraction tomography.20

The adjoint operator is formulated for a linearized fo
ward model, so its application is limited to mildly nonline
problems. This scope of problems is similar to those
which the Born approximation can be applied: a zeroth-or
forward modeling calculation is used to calculate first-ord
perturbations to the medium, so the actual perturbations~be-
ing solved for! should not be so great or many that th
drastically change the character of the zeroth-order field
a certain extent this limitation can be overcome by iterat
the approach, as we will show in Sec. III B.

This paper demonstrates inversion for sound speed fl
tuations in the water column. Medium fluctuations and
608 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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variability they cause is a topic that is of much current int
est, since variability introduces uncertainty into predictio
of naval system performance. There is much ongo
work21–24 addressing how medium fluctuations impact o
ability to predict various processes in the ocean.

Although adjoint modeling is a concept that can be a
plied to all the standard acoustic models, the parabolic eq
tion has a form that best matches the development of adj
techniques in physical oceanography. The reason is tha
PE marching solution in range is analogous to the march
solution in time of ocean circulation models. In addition, t
parabolic equation can model range-dependent envi
ments, where adjoint techniques provide the most pay
~many more unknowns than measurements!. Section II re-
views the parabolic equation, including its tangent linear a
adjoint models, and derives an iterative procedure for solv
inverse problems~Sec. II C contrasts the generalized inver
solution with solutions based on the adjoint!. Section III pre-
sents results of testing the inversion procedure on simula
data based on sound speed profiles measured during
INTIMATE 96 experiment, during which internal tides wer
observed. Section III discusses the linearity of the PE in
particular experiment configuration used, demonstrates b
range-independent and range-dependent inversions,
shows how the adjoint model can be used to calculate c
fidence bounds for estimated parameters.

II. THE PARABOLIC EQUATION FORWARD MODEL,
ITS TANGENT LINEAR MODEL, AND ITS
ADJOINT

The oceanographic community is quite actively develo
ing adjoint techniques, so the oceanographic literature p
vides a useful starting point for formulating an acous
adjoint.4,5,19The common oceanographic problem involves
marching forward in time of ocean temperature, currents,
through an ocean circulation model. One then observes
ocean conditions and seeks to understand how errors in
tializing the ocean model, or in forcing it, caused those o
servation errors. The adjoint model directly back-propaga
the data-model misfits, assuming there are no modeling
rors, to provide corrections to the initial conditions and/
forcing.

In part, seeking a good acoustic analog of this proce
we have in our initial work used a parabolic equation~PE!
model which marches a starter acoustic pressure field
ward in range from the source. The ocean and subbot
sound speed profile may be viewed as a forcing function
we will develop an adjoint model that back-propagates da
model misfits in the pressure field, thereby providing corr
tions to the sound speed profile that reduce these errors

In using the PE to model acoustic propagation, model
error is of much less concern than in ocean circulation m
els~which remain a work in progress!, because the PE mode
is known to produce very accurate pressure predictio
whose error is very small compared to the changes in p
sure caused by the sound speed profile changes that w
inverting for. As a result, we do not explicitly address mo
eling error in our inversion cost functions.
Hursky et al.: Adjoint modeling for acoustic inversion
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A. Perturbation of parabolic equation to produce
tangent linear model

The first necessary ingredient for an adjoint model is
so-called tangent linear model. This is simply a lineariz
version of the PE that estimates~linearly! how perturbations
in the sound speed profile map into perturbations in the p
sure field. The standard homogeneous PE25 ~with no source
in the medium! is

2ik0

]p

]r
1

]2p

]z2 1k0
2@g~r ,z!21#p50, ~1!

whereg(r ,z) is the index of refraction squared,c0
2/c2(r ,z).

Expanding this equation in terms of perturbations in press
p and index of refraction squaredg to first order in«,

g5g1«g̃,

p5p1« p̃1¯ , ~2!

yields

2ik0

] p̃

]r
1

]2p̃

]z2 1k0
2@g~r ,z!21# p̃52k0

2g̃~r ,z!p.

We recognize that typical acoustic inversion problems w
rarely be strictly linear. Therefore, in subsequent sections
will show an iterative method that relinearizes about its l
estimate and can find its way to the solution despite m
nonlinearities.

B. Discretized PE and its tangent linear model

At this point, Eq.~2! can be discretized to implement
tangent linear model for the PE, from which an adjo
model can be constructed. However, it may be pruden
first derive a discretized PE—deriving an analytical adjo
and then discretizing it can introduce errors that break
joint symmetry and result in suboptimal inversions.19 There-
fore, in this section, we start with a discretized PE~the im-
plicit finite differences PE25! and derive a tangent linea
model from its first-order terms.

1. Finite difference PE: Zeroth order

A finite difference version of Eq.~1! is

2ik0

pn112pn

Dr
1A

pn111pn

2
50, ~3!

wherepn is the vector of pressures sampled in depth at ra
n, Dr is the size of the range step, and matrixA is the depth
operator corresponding to the terms]2/]z2 1k0

2@g(r ,z)
21#p in Eq. ~1!. Matrix A is

3
d1 e2

e2 d2 e3

e3 d3

�

dN22 eN21

eN21 dN21 eN

eN dN

4 , ~4!
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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h2 1k0
2@g~r ,zj !21#,

~5!

ej5
1

h2 ,

where h is the depth increment~we have used a constan
depth increment!. Collecting terms

S 2ik0

Dr
I1

A

2 Dpn115S 2ik0

Dr
I2

A

2 Dpn , ~6!

which can be rewritten as

pn115Fpn , ~7!

where

F5S 2ik0

Dr
I1

A

2 D 21S 2ik0

Dr
I2

A

2 D5B21C. ~8!

This is the familiar PE marching solution, whereF contains
the range-dependent index of refraction squaredg(r ,z).

2. PE tangent linear model from first-order finite
difference PE

To construct the adjoint of the PE model, we must fi
construct a tangent linear model for it. A first-order pertu
bation analysis of Eq.~8! yields

~B1«B̃!~pn111«p̃n11!5~C1«C̃!~pn1«p̃n!, ~9!

whereB̃ and C̃ are of opposite sign, and are both diagon
with the i th diagonal element having magnitud
(k0

2/2)g̃(r ,zi). The g̃(r ,zi) are the first-order medium prop
erties we are inverting for, and are indexed on depthzi and
ranger .

The terms of order« produce

Bp̃n115Cp̃n2B̃pn111C̃pn . ~10!

Replacing matricesB̃ and C̃ with diagonal matrixD and
setting the appropriate factors yields

Bp̃n115Cp̃n2
k0

2

2
D~pn111pn!. ~11!

Swapping the diagonal elements ofD @i.e., g̃(r ,zi)] with the
elements of the vector thatD is multiplying ~i.e., pn11

1pn),

Bp̃n115Cp̃n2Gg̃~z!, ~12!

with G a diagonal matrix whose diagonal elements consis
the vector (k0

2/2) (pn111pn). Multiplying both sides by
B21,

p̃n115Fp̃n2Gũn , ~13!

G5B21G, ~14!

whereũn is the vector ofg̃(r n ,z) values sampled in depth a
ranger n @i.e., thei th element ofũn is ũn( i )5g̃(r n ,zi), the
first-order perturbation to the index of refraction squared
rangen and depthi ]. Matrix F in Eq. ~13! is identical to the
F in Eq. ~8! for the zeroth-order pressures. Equation~13!
propagates the first-order pressure fieldp̃ ~the perturbation to
609Hursky et al.: Adjoint modeling for acoustic inversion
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the zeroth-order pressure fieldp!, with the first-order me-
dium perturbationsũn @i.e., g̃(r ,z)] acting as a forcing func-
tion. The perturbationsg̃(z), and matricesB and C, by
which F and G are represented, can be range depend
Equation~13! is the tangent linear model for our~otherwise
nonlinear! PE model. It is important to keep in mind that th
tangent linear model and the adjoint model derived from i
Sec. II D propagate quantities that are first-order pertur
tions.

C. How adjoint model arises in our PE-based
inversion

In this section, we combine the sequence of PE mar
ing steps into a single linear system, and show how the
joint of this system back-propagates data-model misfit at
observation points back to the points in the medium wh
adjustments should be made. The purpose of this section
illustrate what an adjoint model does in a very concrete w
We will actually use a more efficient adjoint formulatio
presented in the next section to solve inverse problem
later sections.

To simplify notation, we drop the tilde notation that wa
used in Sec. II B to indicate a first-order perturbation a
assume all references top andu below are to their first-orde
terms.

Equation~13! generates the following equations, one f
each range step~the subscripts indicate the index of the ran
step!:

p15F0p02G0u0 , ~15!

p25F1F0p02F1G0u02G1u1 ,

]

pN5FN21FN22¯F1F0p0

2 (
n50

N21

FN21FN22¯Fn11Gnun .

We include vectorp0 , the correction to the presumed start
field, as an unknown here for completeness. We will o
solve for medium properties in the sections that follow. Ea
pressurepn is a function of all the medium property vecto
ui , i 51,...,n, leading up to it. A matrix representation o
this summation is

@A B0 B1 ¯ BN21#F p0

u0

u1

]

uN21

G5pN , ~16!

where the submatrixA is

A5FN21FN22¯F0 , ~17!

each submatrixBn is

Bn52FN21FN22¯Fn11Gn , ~18!

and p0 and all the individualun vectors have been stacke
one on top of each other in Eq.~16! to form the super vecto
610 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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u. Equation~16! is a representation of the inverse problem
a familiar linear system form:

Fu5pN , ~19!

whereF andu are composite matrices.
Equation~19! can be solved using either a generaliz

inverse ofF,

û5F1pN , ~20!

or an iterative steepest descent technique,

ûi5ûi 211aF* ~Fui 212pN!, ~21!

in which the second term on the right hand side is just
gradient of the squared data-model misfit, scaled by a s
size parametera. Note how the gradient is formed by th
adjoint F* operating on the data-model misfitFui 212pN .

From Eq.~16!, the conjugate transpose ofF ~the adjoint
of our linearized PE! is

F* 5F A*
B0*
]

BN21*
G , ~22!

where the individual matrix

Bn* 52Gn* Fn11* ¯FN22* FN21* ~23!

can be interpreted as the transfer matrix which ba
propagates the data-model misfit~often identified as the ad
joint field! from the receiver at rangeN to points back in the
medium at rangen. Matrix FN21* steps from rangeN to N
21. Matrix FN22* steps from rangeN21 to N22, and so on,
until at rangen, Gn* transforms the adjoint field to a medium
property correction at range stepn ~as we will show later!.
The adjoint of our forward model propagates informati
from the observations at the receiver array back to all
medium properties that we are inverting for~i.e., theun at all
rangesn). Note that matrixA* similarly propagates infor-
mation all the way back to the source, where it can be use
correct the starter field~if this is treated as an unknown!.

D. Fixed-point iteration to invert for medium
properties

In this section, we present an alternative derivation
the adjoint model, using Lagrange multipliers. This yields
fixed-point iteration, which we relate to a steepest-desc
iteration. To simplify the presentation, as in Sec. II C, w
drop the tilde notation that was used in Sec. II B to indica
first-order perturbations and assume all references top andu
are to their first-order terms.

The first-order parabolic equation is

pn115Fnpn2Gnun , ~24!

where the unknown medium propertiesun act as forcing
functions at each range stepn of the marching solution@Eq.
~24! is the same as Eq.~13!, without the tilda notation#.
MatricesFn and Gn are functions only of the zeroth-orde
pressures and medium properties, and not their first-o
perturbations,pn andun .
Hursky et al.: Adjoint modeling for acoustic inversion
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To solve forun , we formulate a cost functionJ(p,u,l)
to be minimized:

J~p,u,l!5
1

2
~pN2mN!* ~pN2mN!

1 (
n51

N

ln* ~pn2Fn21pn211Gn21un21!

1
b

2 (
n50

N21

un* un . ~25!

The first term inJ seeks to minimize the mismatch betwe
the measuredmN and modeledpN pressure increments, bot
at range indexN. The data-model misfit in the first term wi
also contain measurement noise inmN , which we ignore,
since we focus on the underdetermined case~which provides
no redundant measurements that can be used to smoot
solution!. Since we are dealing with first-order terms,mN is
the difference between the measured pressure and the ze
order pressure prediction. The modeled pressurepN is calcu-
lated by propagatingpn from the source to the receiver usin
Eq. ~24! @i.e., our tangent linear model$Fn ,Gn% with the
estimated environmental parametersun as driving functions#.
Given a solution forun , the zeroth-order pressure plus th
pressure correctionpN calculated usingun should reproduce
the measured pressure. The second term uses Lagrange
tipliers ln ~vectors at each range, sampled in depth! to en-
force the hard constraint that the model is perfect~i.e., pn

and un are completely governed by the linearized forwa
model $Fn ,Gn%). The third term is a regularizing term t
minimize the amplitude of the medium property perturb
tions un , with b a weighting term to regulate how much w
allow theun to stray from our assumed zeroth-order valu
~later, we will setb to the ratio of the variances of the pre
sure measurements and the medium properties!.

Admittedly, this is an unusual way to formulate an i
verse problem. We have set up a large number of unkno
in all the intermediatepn , in addition to the already large
number of unknownsun . We will show that minimizing the
cost function in Eq.~25! is a more direct way of inverting fo
theun than repeatedly running the forward model to explo
the surfaceJ as a function ofun .

Note thatJ is a function ofun at all ranges and depths
so its minimization can be used to resolve range-depen
features.

The partial derivatives ofJ(p,u,l) are

]J

]pN
5pN2mN1lN , ~26!

]J

]pn
5ln2Fn* ln11 , ~27!

]J

]un
5bun1Gn* ln11 , ~28!

]J

]ln
5pn2Fn21pn211Gn21un21 . ~29!
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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Setting these partial derivatives to zero yields a syst
of equations which are solved to invert for the sound sp
profile. Much of the adjoint literature describes iterative pr
cesses to solve these equations. It should be emphasized
the iteration is not something that directly follows in logic
sequence but is simply a proposed approach to solving
large system. Actually, it is just a so-called fixed-point
functional iteration~also called a Picard iteration!.

To explain the iteration in those terms, the derivatives
Eqs.~26!–~28! are set to zero and rearranged to yield

un5 f ~un! ~30!

with

f ~un!52
1

b
G* ln11 . ~31!

The termGn* ln11 comes from the back-propagation of th
lN to ln , with lN a function ofpN , andpN itself calculated
from un . The idea of a fixed-point iteration is to pick
starting guess,u0, and apply a simple recursion:

ui 115 f ~ui !. ~32!

Whether the fixed-point iteration converges or not is oft
unclear. However, if it does, then we have solved for t
solution of our original equation. In fact, part of the art
constructing a good fixed-point iteration is to rearrange
original equation into a form where the iteration converg
as rapidly as possible. For instance, we can obtain a bro
class of iterations by multiplying Eq.~30! by a and adding
un on both sides,

un1aun5un1a f ~un!, ~33!

which is rearranged as

un5un2a~un2 f ~un!!. ~34!

Now, a provides a parameter that we can adjust to optim
the rate of convergence. To summarize the fixed-point ite
tion in terms of the variables in our problem, we have t
following recursion:

pn11
i 11 5Fnpn

i 112Gnun
i , ~35!

lN
i 115mN2pN

i 11 , ~36!

ln
i 115Fn* ln11

i 11 , ~37!

un
i 115un

i 2aS un
i 1

Gn* ln11
i 11

b D . ~38!

In words, we calculatepn
i 11 using our forward model to

propagate pressures from the source to the receiver base
our current estimate ofun

i in Eq. ~35!, initialize lN
i 11 at the

receiver to the data-model misfit@Eq. ~36!#, propagate the
ln

i 11 from the receiver to the source in Eq.~37!, and calcu-
late the updated first-order medium propertiesun

i 11 from the
updatedln

i 11 at all range indexesn in Eq. ~38!.
Equation ~37! represents theadjoint model. The ln’s

form theadjoint fieldpropagated by the adjoint modelFn* .
Equation ~36! initializes the adjoint fieldlN to the data-
model misfit at the receiver. Note the complementary re
tionship between the pressurespn , being propagated from
611Hursky et al.: Adjoint modeling for acoustic inversion
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the source to the receiver by our forward modelFn , and the
Lagrange multipliersln , being propagated by the adjoin
modelFn* backward from the receiver to the source.

A compelling interpretation of the adjoint is that the o
served field is a superposition of a baseline field due to
presumed medium and a perturbed field due to the unkn
medium perturbations~which we invert for!. The adjoint
model back-propagates~time-reverses! the perturbed field to
the unknown medium perturbations, which are viewed
sources of diffraction.1

An important insight about this fixed-point iteration
that it is also equivalent to a descent technique. To see
observe that the second term in Eq.~34! @also Eq.~38!# is
proportional to the gradient ofJ with respect tou as given in
Eq. ~28!. Thus, our fixed-point iteration is equivalent to a
iteration

ui 115ui2
a

b

]J

]u
. ~39!

In this form, we see that the parametera plays the usual role
in a steepest descent method of controlling the step siz
the descent direction. It is natural in this descent framew
to consider all the standard extensions such as conjugate
dient techniques.26 We do not discuss these options furth
here, but simply note they are part of the standard se
techniques used to improve the convergence of the ad
iteration.

The fixed-point iteration equations derived above are
terms ofFn andGn which are functions of the zeroth-orde
medium properties and pressures. As a result, the itera
process can periodically be relinearized about the curren
timates forun in order to update the tangent linear mod
This enables the process to handle mildly nonlin
problems.

III. INVERTING FOR INTIMATE 96 INTERNAL TIDES
„SIMULATED RESULTS …

In this section, the adjoint method described in Sec. I
is tested on synthetic acoustic data calculated for a serie
sound speed profiles measured during the INTIMATE
experiment27 during which internal tides were observed. Fi
ure 1 shows the entire sequence of measured sound s
profiles, in the order that they were measured~the sampling
in time was not uniform, so indexes rather than time units
shown on the horizontal axis!. Figure 2 shows the entire se
of measured sound speed profiles and the source-rec
configuration used in our simulation. These profiles w
measured over roughly 60 h. The experiment configura
was fixed-fixed. The line joining the source and receiver w
perpendicular to the movement of internal tides during p
of the actual experiment. Such a configuration would sugg
a range-independentsound speed field in the plane joinin
the source and receiver.

An important step when applying adjoint methods is
ensure that the problem has been linearized, so Sec.
compares the pressures calculated by the original PE an
linearized PE models, for the configuration to be used
demonstrate the inversion. Section III B applies the iterat
612 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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adjoint technique described in Sec. II to a series ofrange-
independentsound speed fields. Section III C shows that o
adjoint implementation reproduces the tangent linear mo
~using far fewer modeling runs than if the forward mod
alone were used!. Section III D shows how a generalize
inverse of the linearized forward model can be used as
alternative to our iterative adjoint inversion, and also how
calculate error bars for these inversion results. Section I
applies the iterative adjoint inversion to a range-depend
inversion problem.

The PE model was used to synthesize acoustic press
to serve as ‘‘measured’’ data in our simulations. Pressu
were calculated at 400 Hz in Sec. III B for the rang
independent case and for a range of frequencies from 10
400 Hz in Sec. III E for the range-dependent cases. The
ceiver was a fully spanning vertical line array at a 2-k
distance from the source. The source depth was at 5
depth in Sec. III B for the range-independent case. Sou
spanned 5 to 90 m for the range-dependent cases in

FIG. 1. Sound speed profiles measured during INTIMATE 96 over a ti
interval of roughly 3 days. The sound speed profiles were measured at
approximately regular time intervals, so the horizontal axis shows the in
of the measurements. The image scale shows sound speed measured

FIG. 2. Sound speed profiles measured during INTIMATE 96 and exp
mental configuration for which acoustic data was synthesized. All invers
were performed at a frequency of 400 Hz and a range of 2 km.
Hursky et al.: Adjoint modeling for acoustic inversion
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III E, with each source an independent omni-directional po
source and not part of a transmitting array.

A. Testing our tangent linear model to verify we are
in linear regime

Prior to using the adjoint method for inversion it is im
portant to assess whether the tangent linear model an
adjoint are reasonable approximations to the full PE mode
this experimental configuration. Using the same experim
tal configuration as in our inversions, we compare pertur
tions produced by our tangent linear model with pertur
tions predicted by the original~nonlinear! PE. Figure 3
shows two sound speed profiles,c(z) to be used as a base
line, andc(z)1dc(z) as a perturbed profile. The baselin
profile is the mean profile calculated from the entire set
INTIMATE 96 sound speed measurements. The pertur
profile is one chosen from the measured profiles for its la
deviation from the mean profile. Figure 4 shows the press
field produced by the original PE model operating on
baseline sound speed profile (P(c), whereP represents the

FIG. 3. Perturbed and baseline sound speed profiles used to test linear
INTIMATE 96 configuration.

FIG. 4. Baseline pressure magnitude at 2 km, source depth of 50 m, a
400 Hz.
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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original PE!. Figure 5 shows the magnitude difference b
tween perturbed and baseline pressures calculated by
original PE @i.e., P(c1dc)2P(c)]. Figure 6 shows the
magnitude difference between both sets of perturbed p
sures, those calculated by the original PE and those ca
lated by its tangent linear model@i.e., P(c1dc)2P(c)
2F(c)dc, whereF(c) represents the tangent linear mod
linearized aboutc]. Comparing the images in Fig. 5 and Fig
6 ~whose color scales are the same! shows that the perturba
tion in pressures due to the change in medium properties~in
Fig. 5! is always larger than the size of the error between
original PE model and its tangent linear model~in Fig. 6!.
This shows that the problem is not too nonlinear~our itera-
tive process will relinearize after each iteration!, and that our
configuration is reasonable for testing our iterative adjo
process.

As we have shown in Secs. II C and II D, the adjoi
process is a local optimization, so if we are outside the
lution’s ‘‘basin of attraction,’’ there is no mechanism for e
caping a spurious local minimum. This can happen if t
initial guess is too far from the correct solution, or if th
linear approximation being used by the tangent linear mo

of

at

FIG. 5. Magnitude difference between perturbed and baseline pressu

FIG. 6. Magnitude difference between perturbed and tangent linear p
sures~would be zero if tangent linear model perfectly predicted the p
turbed pressure!. Compare to differences shown in Fig. 5.
613Hursky et al.: Adjoint modeling for acoustic inversion
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o-
~and its adjoint! fails to reproduce the true cost functio
Because it relinearizes about its last estimate and can fo
a nonlinear basin of attraction if started reasonably close
the true solution, our iterative adjoint process can han
slightly nonlinear problems.

B. Adjoint inversions using fixed-point iteration
„range-independent case …

In this section, the iterative adjoint inversion proce
discussed in Sec. II D is tested onsyntheticacoustic data to
assess the feasibility of inverting for sound speed profi
that indicate the internal tides present during the INTIMAT
96 experiment. For each measured profile from INTIMAT
96, an acoustic pressure vector is calculated by the PE m
to serve as a ‘‘measured’’ pressure vector for our inversio
Each of these ‘‘measured’’ pressures is inverted to estim
the sound speed profile used to synthesize it. The mean o
entire set of profiles serves as the initial guess in each in
sion.

Before showing the results on the entire sequence
profiles, we show the details of an inversion on a sin
profile, profile 28, selected for its comparatively large dev
tion from the mean. Figure 7 shows the ‘‘measured’’ press
~calculated using profile 28! and the modeled pressure upo
initialization ~calculated for the mean profile, used to initia
ize our iterative process!. A single iteration consists of usin
the forward model to calculate a modeled pressure, then
ing the adjoint model to calculate a corrected sound sp
profile. Figure 8 shows cost function values@see Eq.~25!# at
iterations 1–50. Figure 9 shows the modeled pressures
the measured pressures after 50 iterations. Figure 10 sho
comparison between the true and estimated sound speed
file perturbations~i.e., after 50 iterations!.

The inversion shown in detail for profile 28~in Figs.
7–10! was repeated at each of the profiles measured du
the INTIMATE 96 experiment. Figure 11 shows the inve
sion results for the entire set of INTIMATE 96 sound spe
profiles. The sound speed profiles were measured at

FIG. 7. ‘‘Measured’’ pressure was synthesized using PE with true so
speed profile~solid line!. Modeled pressure was synthesized using the
model with mean sound speed profile~dashed line!. Real components are
shown in left plot. Imaginary components are shown in right plot.
614 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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approximately regular time intervals, so the horizontal ax
show the indexes of the measurements. The upper left
shows the ‘‘measured’’ profiles~the true profiles, in our
simulation!. The lower left plot shows the estimated profile
after 50 iterations at each profile. The upper right plot sho
the ‘‘true’’ profiles minus the mean profile. These are the fi
order quantities that are being estimated. The lower right p
shows the difference between the ‘‘true’’ and estimat
sound speed profiles. Both the upper right and lower ri
plots have the same scale, so that the estimation errors ca
compared with the quantities being estimated. The estima
errors are significantly smaller. This experiment was repea
with only four receiver elements~using the same configura
tion as the INTIMATE 96 experiment! and at a number of
signal-to-noise ratios~additive white gaussian noise wa
added at each of the four receivers!. Similar results to those
shown in Fig. 11 were obtained at SNRs greater than 10

C. Using adjoint model to construct tangent linear
model „range-independent case …

In this section, partly to assess the validity of our adjo
implementation, we calculate the tangent linear model us

dFIG. 8. Evolution of objective function produced by iterative adjoint pr
cess.

FIG. 9. Measured and final estimated pressure magnitudes.
Hursky et al.: Adjoint modeling for acoustic inversion
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our adjoint model and compare it with a tangent linear mo
calculated in a brute force fashion using the original PE
our tangent linear modelF is M by N ~M observations,N
waveguide parameters!, we will use M runs of our adjoint
model to calculate theM rows of F instead of usingN runs
of our forward model to calculate theN columns ofF. This
comparison is made at one of the profiles estimated in S
III B ~profile 28!. With a much larger number of medium
properties than measurements, the adjoint model provid
much less computationally demanding means of calcula
the tangent linear model. As we will show in Sec. III D, su
a tangent linear model can be used to form a general
inverse solution to the inverse problem~an alternative to the
iterative process we have demonstrated above! and to calcu-
late error bars around the inverse problem solution.

The tangent linear model is the matrixF whose element
Fi j is the i th observed pressure due to a unit perturbation
the j th index of refraction squared value. Thus, if we use
configuration of source and a vertical line receive array~as in
our simulated example!, a column ofF can be calculated by
two runs of our unperturbed PE model:

f i5P~u1ũi !2P~u!, ~40!

where f i represents thei th column of F, and P(u) repre-
sented the pressures calculated at the receive array elem
by the original PE model using medium propertiesu. The
perturbation inu is ũi5aei , whereei is the i th elementary
basis vector~having a one at itsi th element and zeros at a
other elements!, and a is a scaling factor small enough t
keep the model linear. Eachf i is a vector of pressure pertu
bations at the vertical line receive array elements due to
perturbation ofu at its i th element. The matrixF is rescaled
by dividing it by a, to compensate for the earlier scaling
the index of refraction perturbationsũi . We will call the
matrix calculated using the forward modelFu

forward.
For the adjoint approach, we run the adjoint model

calculate the sound speed correction that would reprod
pressure perturbations at each individual receiver,

ũj5F* ~ p̃j !, ~41!

FIG. 10. True and final estimated sound speed profile perturbations
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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whereF* is the adjoint model@see Eqs.~37! and ~38!# and
p̃j5aej . The conjugates of vectorsũj are put into the rows
of a new matrix,Fu

adjoint. The ũj are often called the repre
senter adjoints, which must be calculated prior to calculat
the representers themselves in a process which convert
inverse problem from a two-point boundary value problem
a linear algebraic problem in which the solution is expres
as a linear combination of representers.19

We compared the left eigenvectors and singular val
~calculated by a singular value decomposition! of Fu

forward

with Fu
adjoint to assess how well the adjoint model reproduc

the tangent linear model calculated by the unperturbed
At the significant eigenvectors, the adjoint model was able
reproduce the eigenstructure of theFu

forward matrix.28

D. Generalized inverse solution and posterior
covariances „range-independent case …

In this section, we use the representer adjoints calcula
in the previous section to calculate a generalized inverse
lution, as discussed in Sec. II C. We show this calculation
a final correction to the estimate produced by our iterat
adjoint process in Sec. III B, but it could in principle repla
the iterative adjoint-based inversion. We also show how
representer adjoints can be used to calculate theposteriori
covariances of our sound speed estimates, given prior c
riances for our pressure measurements and medium pro
ties. All the calculations in this section~as in the previous
section! are performed at profile 28, estimated in Sec. III

Prior knowledge of measurement and medium prope
error statistics is typically incorporated into the cost functi
we seek to minimize using covariance matricesCp ~for pres-
sure measurement errorsp! and Cu ~for medium properties
u!. These covariance matrices map the data vector space
model vector space to their dual spaces, enabling a consi
formulation of the optimization in terms of a gradient~which
is an element of the dual space!.29 Although incorporating
more realistic covariances is usually necessary in pract
applications, we will simplify the material that follows b
assuming the covariances are scaled identity matrices:

Cp5sp
2I , Cu5su

2I , ~42!

and useb5 sp
2/su

2 to represent our prior expectation of th
relative accuracy of our measurements compared with tha
our baseline medium properties. For high SNR, we setb low
(sp small compared withsu), allowing our u estimates to
stray further from our prior expectations~the zeroth-order
medium properties!. Note that although we have not explic
itly included measurement errors in Eq.~25!, it is addressed
implicitly by b, ~and in general byCp andCu when they are
not scaled identity matrices!.

Defining a cost functionJ(u) in terms of the data-mode
misfit and norm ofu ~to penalize largeu!,

J~u!5 1
2 ~Fu2mN!* Cp

21~Fu2mN!1 1
2 u* Cu

21u, ~43!

setting the gradient ofJ(u) to zero, and solving foru pro-
duces

u5~F* Cp
21F1Cu

21!21F* Cp
21mN , ~44!
615Hursky et al.: Adjoint modeling for acoustic inversion
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several diurnal cycles during INTI-
MATE 96 experiment. Horizontal axes
are the sample numbers of the me
sured profiles. Note the different im
age scales in the left and right column
~the same image scale is used in ea
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in which the matrix inverse is performed in the space
model parameters~analogous to a least-squares solution
the regularizing termCu

21u is omitted!. An alternative form,

u5CuF* ~FCuF* 1Cp!21mN , ~45!

enables the matrix inverse to be performed in the data sp
~analogous to a minimum-norm solution!. These solutions
both involve the calculation of a potentially expensive ge
eralized inverse—the choice can be made by which of
two spaces, model or data, is smaller.

The inversions in Sec. III B produced estimates ofu and
residual errors]p ~data-model misfit after 50 iterations!. Set-
ting Cp andCu to be scaled identity matrices andb to 1023

in Eq. ~45!, we substitute]p for mN and calculate]u, a final

FIG. 12. Gray line shows sound speed estimate produced by iterative ad
process. Black line shows the true sound speed. Dashed line shows the
of using generalized inverse to further reduce the residual errors from
iterative process.
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correction to our previous estimateu. Figure 12 shows the
adjoint solution from the previous section, the true solutio
and the solution refined by the generalized inverse ofFu . At
almost all depths, the generalized inverse has improved
adjoint estimates.

To calculate error bars for our estimates ofu, we assume
uncorrelated Gaussian errors and that our estimate is clo
the true sound speed~so that a linear assumption holds!.
When this is the case, theposteriorerror covariance matrix
~of the medium property estimation errors! is defined in
terms of a prior pressure measurement covarianceCp and a
prior medium property covariance matrixCu as

Ru5~Fu* Cp
21Fu1Cu

21!21 ~46!

or, in the space of measurements,

Ru5Cu2CuFu* ~FuCuFu* 1Cp!21FuCu . ~47!

SettingCp andCu to scaled identity matrices, settingsp
2

to the mean squared residual error~i.e., the data-mode misfi
from the adjoint-based iterative inversion after 50 iteration!,
and settingsu

2 so thatb was 25, we calculatedRu using Eq.
~46!. Using the residual errors to set the prior covarian
would not be justifiable with real data~this variance should
representa priori knowledge of the measurement system a
curacy!, but seemed a reasonable way in this illustrat
simulated example to set a representative level for these v
ances.

Figure 13 shows the true sound speed, the adjoint e
mate for the sound speed, and bounding curves three s
dard deviations above and below the adjoint estimate.
standard deviations are the diagonal elements ofRu . The
eigenvectors ofRu are the principal components of the e
rors, and can be plotted to show the spatial correlation of
errors. BecauseCu is diagonal, its addition only serves t

int
sult
ur
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modify the eigenvalues ofRu and not its eigenvectors, cau
ing the eigenvalues ofRu to increase or decrease accordi
to changes insu

2 .

E. Adjoint inversions „range-dependent case …

In Sec. III B, we inverted for range-independent sou
speed perturbations. In this section, we invert for ran
dependent sound speed perturbations. To construct a ra
dependent test case, we treat the time sequence
INTIMATE 96 sound speed profiles as a sequence of profi
spanning a range interval. Figure 14 shows the ran
dependent sound speed perturbation we will be imaging w
our adjoint model~this is a perturbation from the mean pr
file!. This 2D sound speed perturbation was generated in
steps. First, the sequence of INTIMATE 96 profiles was
terpolated to cover 2 km in range with a 1-m spacing
tween profiles. Second, we isolated a short range inte
where a large deviation from the mean profile occurred,

FIG. 13. Sound speed estimates with error bars~relative to baseline sound
speed profile!.

FIG. 14. Range-dependent sound speed perturbation being imaged b
joint process. This figure shows the range-dependent feature being imag
1000 m. Image scale shows magnitude of perturbation in sound speed
sured in m/s.
J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
-
ge-
of
s

e-
th

o
-
-
al
y

applying a Gaussian weighting centered at this interval. T
interval covers profiles 16–18 in Fig. 11. Working with a
isolated 2D feature enabled us to translate this structur
different ranges~500, 1000 and 1500 m!, so that we could
compare our ability to image it at these different ranges.

The parabolic equation model described in Sec. II w
used to generate synthetic acoustic data on the receive a
used in previous sections, for sources at depths from 5 to
m in 5-m steps at 100–400 Hz in 5-Hz steps. In contras
the results in Sec. III B, where the calculated sound sp
corrections were averaged over range~since range-
independent sound speed fields were being inverted f!,
each source depth and frequency here produced a 2D ma
sound speed corrections versus range and depth. Se
combinations of source depths and source frequencies w
used to calculate inversions for the range-dependent so
speed perturbation shown in Fig. 14. Using only a sin
source depth resolved the location of the range-depen
feature, but did not resolve the shape very well, produc
only several highlights within the shape. The positions
these highlights changed with source depth. Using multi
frequencies did not improve the results as much as us
multiple source depths, probably because it is more imp
tant to adequately sample the feature with acoustic paths
to use a wider bandwidth. Changing the frequency of
ranging signal does not appreciably change the acou
paths visiting the 2D feature being imaged.

Figure 15 shows the summation of maps from all sou
depths ~5–90 m in 5-m increments! and all frequencies
~100–400 Hz in 5-Hz increments!. Only a single iteration of
the process applied in Sec. III B was used. Figures 14 and
show the adjoint model has imaged the 2D feature at 1
m. Further iterations would better resolve the shape and
duce an amplitude that better matches that shown in Fig.
This feature was similarly imaged when translated to 5
and 1500 m~although these results are not shown!.

This shows that an adjoint model can produce a 2D m
of large dimension using a single pass of the adjoint mod
However, there is no guarantee that the map of correcti

ad-
d at
ea-

FIG. 15. Image of 2D feature at 1000 m after a single iteration of the adj
process. Image scale shows magnitude of the correction to be applied t
sound speed field.
617Hursky et al.: Adjoint modeling for acoustic inversion
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produced by the adjoint model is unique. With too few me
surements~e.g., too few source depths!, it is conceivable that
many 2D maps of corrections could be found to reprod
the same data-model misfit at the receive array. If the inve
problem has multiple solutions, the adjoint process provi
no indication that a solution it has found is not uniqu
Analysis of the matrix used to linearize the problem@e.g.,
Eq. ~19!# and its null space could be used to alert us to t
ambiguity.

These results also rely upon the range-dependent so
speed perturbation being small enough that our initial gu
~the mean profile, as defined in previous sections! is in some
neighborhood of the objective function minimum. An initi
guess too far away from the true profile could result in
inversion process getting trapped in a spurious local m
mum.

IV. CONCLUSIONS

As we have shown above, an adjoint model propaga
the data-model misfit~which is often identified as the adjoin
field! back through the medium and calculates the pertur
tions to the forward model inputs needed to correct for t
misfit. The adjoint model generates a sensitivity map of
model parametersun to the observationsmN , providing a
direction for steepest descent in inverse problems. The a
native is to repeatedly run the forward model to test h
each possible perturbation in the model parametersun influ-
ences the observablesmN . The adjoint model can thus pro
vide a more economical way of exploring the search sp
~of model parametersun) in aid of solving inverse problems
The computational savings of using an adjoint model
creases with the number of unknowns in the problem be
addressed, since each unknown in the problem presen
potentially distinct perturbation that must be assessed by
forward model. As a result, inversion processes using an
joint model can accommodate large-dimensional proble
without demanding lower-dimensional representations, o
required by alternative inverse methods in order to red
the number of forward modeling runs needed to explore
search space.

To show how an adjoint model arises in the famili
setting of solving a linear system, we have shown how fi
order perturbations to the PE marching solution can be
mulated as a linear system and solved using a steepes
scent iteration, where the adjoint of the linear system is u
to calculate the gradient. The steepest-descent iteration
vides an alternative to calculating the inverse of a typica
very large matrix. We have also presented an alternative
mulation of the adjoint, showing how the adjoint model f
the marching PE solution can be derived using Lagra
multipliers, which are the ‘‘adjoint field.’’ The adjoint mode
back-propagates its field from the measurement locat
back to the medium perturbations that are causing d
model misfit. Because the ‘‘adjoint field’’ provides a mech
nism for back-propagating information in this way, there
no need to construct the potentially very large linear sys
matrix, needed in the former derivation. Instead, we use
models, the original PE forward model and its adjoint,
propagate their respective fields in their respective dir
618 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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tions. A fixed-point iteration results from this formulation
which we have shown is equivalent to a steepest-des
iteration based on a gradient, calculated from the ‘‘adjo
field’’ back-propagated by the adjoint model.

As a demonstration of these techniques, we have app
our fixed-point iteration to the series of sound speed profi
measured during the INTIMATE 96 experiment. We u
acoustic ‘‘data’’ calculated by our PE model with the me
sured sound speed profiles provided as inputs. We invert
~synthetic! acoustic ‘‘data’’ for the sound speed profiles,
demonstrate our technique. We have shown successful in
sions for both range-independent and range-dependent s
speed features. For the range-independent case we have
shown how to provide estimates of the accuracy of o
results.

The adjoint-assisted inversion presented in this pa
can be viewed as a wave-theoretic approach to tomogra
and thus may provide an alternative to ray-based tomogra
and its shortcomings.30 However, we recognize that relyin
upon pressure as the observable quantity is problematic,
hope in the future to extend the adjoint formulation to mo
robust observables.

Lest we leave the impression that adjoint modeling i
panacea for all inverse problems, we describe some diffi
ties that must be overcome in adjoint modeling. An adjo
model only works perfectly when the analogous forwa
model is linear. This has not inhibited the use of adjo
models in other fields, since mildly nonlinear problems c
typically be linearized and more than slightly nonlinear pro
lems can be attacked with iterative formulations14,31in which
an adjoint model remains a valuable component. Never
less, some problems will not lend themselves to adjoint m
eling, because of their inherent nonlinearity. The adjo
method finds a local minimum, with no guarantee of it bei
globally optimal in problems whose objective function is n
convex. Like other local methods, the adjoint iterative p
cess may require a more sophisticated optimization stra
~e.g., conjugate gradients! if the simple steepest descent pr
sented in the paper converges too slowly~the fixed point
iteration may not converge at all!. Finally, an adjoint model
poses the burden of requiring additional implementations
both a tangent linear and an adjoint model, over and ab
the implementation of the forward model. Efforts are und
way to automate the construction of such models from
original forward model code.32
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