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The use of adjoint modeling for acoustic inversion is investigated. An adjoint model is derived from

a linearized forward propagation model to propagate data-model misfit at the observation points
back through the medium to the medium perturbations not being accounted for in the model. This
adjoint model can be used to aid in inverting for these unaccounted medium perturbations. Adjoint
methods are being applied to a variety of inversion problems, but have not drawn much attention
from the underwater acoustic community. This paper presents an application of adjoint methods to
acoustic inversion. Inversions are demonstrated in simulation for both range-independent and
range-dependent sound speed profiles using the adjoint of a parabolic equation model. Sensitivity
and error analyses are discussed showing how the adjoint model enables calculations to be
performed in the space of observations, rather than the often much larger space of model parameters.
Using an adjoint model enables directions of steepest descent in the model pardmleterae

invert for) to be calculated using far fewer modeling runs than if a forward model only were
used. ©2004 Acoustical Society of AmericdDOI: 10.1121/1.1636760

PACS numbers: 43.30.Pe, 43.60.Pt, 43.60[RviMS] Pages: 607-619

I. INTRODUCTION back to the points in the medium where a correction to the

presumed medium properties can be made to reduce the data-
This paper investigates the use of adjoint modeling formodel misfit.

acoustic inversion. Typically, in inversion problems a for- An adjoint model has particular relevance to inversion

ward model driven by presumed medium properties is use@roblems in which the unknown parameter space is much

to propagate a field from the source to the observation pointgreater than the observation space. Methods based on adjoint

where the field predicted by the forward model is comparednodels have been used in geophysical inversiefectro-

with the measured field there. The actual medium is nofhagnetic tomogrgpﬁwnd oceanograprﬁT.E’An adjoint ap-

known and is typically a perturbation of the presumed meproach to acoustic inverse scattering problems has also been

dium, to be calculated by an inversion process so that Sube_xplored, on a theoretical level, with emphasis on variational

. . . method$ Other recent work in acoustics includes using ad-
sequent forward modeling can be improved. If the properties

of the medium used to drive the forward model match th oint methods to invert for bottom boundary conditions in the

. : o ocean waveguideand using an adjoint approach with nor-
actual medium properties, then the data-model misfit at th?nal modes to compute derivatives with respect to environ-

observation points is small. If not, these presumed mediu e nia| parametefsin this paper we show how the technique
properties are adjusted and the forward modeling repeategh, e used to invert for medium properties in underwater
until the data-model misfit has been reduced. Note that thgcoustic problems, demonstrating an adjoint-based inversion
emphasis in this process is on the mapping from the unfor range-independent and range-dependent sound speed pro-
known medium properties to the observations, when it is théjles.
medium properties that we want to estimate. What we really ~ To understand the benefits of the approach for acoustic
want is some way to propagate the data-model misfit fromnversion, it is useful to review the commonly used alterna-
our observation points directly back to the points in the medives. A standard approach is to minimize a cost function that
dium where we need to make adjustments. This is what ameasures the difference between forward solutions of a
adjoint model does. It back-propagates an adjoint field, iniinodel and observations. The most direct, brute force method
tialized to the data-model misfit at the observation pointsiS Sometimes called “iterated solution of the forward prob-
lem:” one minimizes the cost function through an exhaustive

_ _ _ - _ _ _ search. While this method can be used for multi-parameter
@Portions of this work were presented in “Adjoint-assisted inversion for .

shallow water environmental parameters,” Proceedings of the Conferencll1VErSions the computational burden can be quite large. For
on Acoustic Variability, 16—20 September 2002, Lerici, La Specia, Italy, instance, if there are 10 parameter values each sampled at 20
Impact of Littoral Environmental Variability on Acoustic Predictions and values, then the search involves?d@uns of the forward

Sonar Performance, edited by N. G. Pace and F. B. Jeidewer, Dor- ; : : _
drecht, 2002 Portions of this work were also presented at the 142ndpr0b|em' Hence, nonlinear methods mVOIVmg a more strate

Acoustical Society Meeting, 3—7 December 2001. gic search such as simulated anneaﬁ@@,n_etic algorithr_rfé’
PElectronic address: paul.hursky@saic.com and other¥ have emerged as more practical alternatives. In
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all of these forward solution techniques, the cost of runningvariability they cause is a topic that is of much current inter-
the forward model becomes the central factor. If the problenest, since variability introduces uncertainty into predictions
is only mildly nonlinear, a first attempt at decreasing this cosbf naval system performance. There is much ongoing
is to consider perturbations from known solutions so that thavork?~2* addressing how medium fluctuations impact our
full cost of a massive forward search is avoided. Linear apability to predict various processes in the ocean.
proximations to the sound pressure equatasa function of Although adjoint modeling is a concept that can be ap-
medium properties have been wused in acoustic plied to all the standard acoustic models, the parabolic equa-
tomography®'® Even with this approach, computing the tion has a form that best matches the development of adjoint
perturbations over the full multi-parameter space remains thtechniques in physical oceanography. The reason is that the
dominant, limiting factor. PE marching solution in range is analogous to the marching
Solutions to inverse problems in ocean acoustics usuallgolution in time of ocean circulation models. In addition, the
includea priori information, such as gross knowledge of the parabolic equation can model range-dependent environ-
ocean environment. For example, the sound speed is typments, where adjoint techniques provide the most payoff
cally close to 1500 m/s. In some cases the starting guess {§'any more unknowns than measuremgn&ection I re-
close enough to the true solution that we are within theviews the parabolic equation, including its tangent linear and
multi-dimensional bowl of the cost function that contains theadjoint models, and derives an iterative procedure for solving
global minimum(unfortunately, it is rarely close enough for inverse problemgSec. Il C contrasts the generalized inverse
a linear inverse to wopk When this occurs, it is useful to solution with solutions based on the adjoirBection Ill pre-
know the gradient of the cost function with respect to thesents results of testing the inversion procedure on simulated
large number of unknown parameters so as to guide us to tHé&ata based on sound speed profiles measured during the
minimum. This gradient can be obtained by operating on thdNTIMATE 96 experiment, during which internal tides were
data-model misfit by the adjoint of the forward problem observed. Section Il discusses the linearity of the PE in the
operato® When the number of unknown parameters isparticular experiment configuration used, demonstrates both
much greater than the number of observations, the adjoiffnge-independent and range-dependent inversions, and
approach can be a less costly method of calculating the gr&hows how the adjoint model can be used to calculate con-
dient than running the forward model for each variation infidence bounds for estimated parameters.
the unknown parameters.

For completeness, we mention that the derivative of a
function mapping one normed vector space to anotagy., !l THE PARABOLIC EQUATION FORWARD MODEL,

sound speed versus range and depth to complex pressdgngANGENT LINEAR MODEL, AND ITS

. . . OINT
amplitude across an array at a given frequersycalled a
Frechet derivativé; often mentioned as the key component The oceanographic community is quite actively develop-
of the inverse procedure. The adjoint method provides a proing adjoint techniques, so the oceanographic literature pro-
cedure to compute the Frieet derivative:>**Adjoint meth-  vides a useful starting point for formulating an acoustic
ods also have an extensive earlier history in control theoryadjoint*°>'°The common oceanographic problem involves a
where they are derived from the Pontryagin princii#t€>™®  marching forward in time of ocean temperature, currents, etc.
Although we pursue a different approach in this paper, thehrough an ocean circulation model. One then observes the
adjoint operator can be derived by applying variational techocean conditions and seeks to understand how errors in ini-
niques to minimize an objective function that includes thetializing the ocean model, or in forcing it, caused those ob-
data-model mismatch and the differential equations that deservation errors. The adjoint model directly back-propagates
scribe the forward model being used, using Lagrange multithe data-model misfits, assuming there are no modeling er-
pliers to set the constraint that the dynamical model is perrors, to provide corrections to the initial conditions and/or
fect. This produces the Euler—Lagrange equations, which afercing.
integrated by parts to reveal the adjoint operator and the In part, seeking a good acoustic analog of this process,
boundary conditions that it must satigf§.”*°Adjoint meth- ~ we have in our initial work used a parabolic equati®E)
ods have also been compared to the filtered back-propagationodel which marches a starter acoustic pressure field for-
technique in diffraction tomograph¥. ward in range from the source. The ocean and subbottom

The adjoint operator is formulated for a linearized for- sound speed profile may be viewed as a forcing function and
ward model, so its application is limited to mildly nonlinear we will develop an adjoint model that back-propagates data-
problems. This scope of problems is similar to those tomodel misfits in the pressure field, thereby providing correc-
which the Born approximation can be applied: a zeroth-ordetions to the sound speed profile that reduce these errors.
forward modeling calculation is used to calculate first-order  In using the PE to model acoustic propagation, modeling
perturbations to the medium, so the actual perturbatibes error is of much less concern than in ocean circulation mod-
ing solved foi should not be so great or many that they els(which remain a work in progressbecause the PE model
drastically change the character of the zeroth-order field. Teis known to produce very accurate pressure predictions,
a certain extent this limitation can be overcome by iteratingvhose error is very small compared to the changes in pres-
the approach, as we will show in Sec. IlI B. sure caused by the sound speed profile changes that we are

This paper demonstrates inversion for sound speed fludgnverting for. As a result, we do not explicitly address mod-
tuations in the water column. Medium fluctuations and theeling error in our inversion cost functions.
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A. Perturbation of parabolic equation to produce 2
tangent linear model di=—12+ k[ y(r,z))—1],

The first necessary ingredient for an adjoint model is the (5
so-called tangent linear model. This is simply a linearized
version of the PE that estimatdimearly) how perturbations
in the sound speed profile map into perturbations in the presynere h is the depth incrementwe have used a constant
sure field. The standard homogeneous*R&ith no source  gepth increment Collecting terms
in the medium is

ejzﬁz,

5 <2ik0|+A <2ikoI A) ®
J J — 4+ = === 7
2iky o0+ o +KL¥(r, )~ 1]p=0, & ar [Pt a )P
. . ) 5 which can be rewritten as
where y(r,z) is the index of refraction squaredg/c?(r,z).
Expanding this equation in terms of perturbations in pressure  Pn+1= FPn, ()
p and index of refraction squaregto first order ine, where
y=y+tey, 2ikg A\ Y2k, A -
=|—I+5| |-—I1-5|=B7'C. 8
p=p+ep+---, 2) Ar 2 Ar 2
yields This is the familiar PE marching solution, whdfecontains
PO the range-dependent index of refraction squayédz).
—y p ~ ~
2iko—+ ——7 + kgL ¥(r,2)~ 1]p= —k§¥(r.2)p.

2. PE tangent linear model from first-order finite

We recognize that typical acoustic inversion problems will difference PE

rarely be strictly linear. Therefore, in subsequent sections we  To construct the adjoint of the PE model, we must first
will show an iterative method that relinearizes about its lastconstruct a tangent linear model for it. A first-order pertur-
estimate and can find its way to the solution despite mildbation analysis of Eq8) yields

nonlinearities. ~ _ ~ _
(B+&B)(Pn+1tePni1)=(C+eC)(pyteby), 9)

B. Discretized PE and its tangent linear model whereB andC are of opposite sign, and are both diagonal,
] . ] . ] with the ith diagonal element having magnitude
At this point, Eq.(2) can be discretized to implement a (ké/Zﬁ/(r,zi). The(r,z;) are the first-order medium prop-

tangent linear model for the PE, from which an adjointgyties we are inverting for, and are indexed on deptand
model can be constructed. However, it may be prudent t@gnger,

first derive a discretized PE—deriving an analytical adjoint
and then discretizing it can introduce errors that break ad- 5 _
joint symmetry and result in suboptimal inversidisChere- BP,+1=CP,—Bpnh+1+Cppy- (20
fore, in this section, we start with a discretized REe im-
plicit finite differences PE®) and derive a tangent linear
model from its first-order terms.

The terms of ordee produce

Replacing matrice® and C with diagonal matrixD and
setting the appropriate factors yields

N
1. Finite difference PE: Zeroth order BPn+1=CPn— ED(pn+l+ Pn)- (11)
Afinite difference version of Eq1) is Swapping the diagonal elementsffi.e., ¥(r,z)] with the
Coptti-pn pnti4pn elements of the vector thdD is multiplying (i.e., pn+1
2iko—x— A5 —=0, @ +py),
wherep" is the vector of pressures sampled in depth at range BPBn+1=CPh—1%(2), (12)

n, Ar is the size of the range step, and malg&iXS tzhe depth  with I" a diagonal matrix whose diagonal elements consist of
operator corresponding to the terms/dz”+kg[¥(r,2)  the vector k¥2) (pns1+Ps). Multiplying both sides by

—1]p in Eq. (1). Matrix A is B~1
-dl € ] Pn+1=Fpn—Gly, (13
e d e; G=B"T, (14
e; dj

wherel, is the vector ofy(r,,z) values sampled in depth at

, (4)  ranger, [i.e., theith element ofti, is Un(i)=%(rp,z), the
first-order perturbation to the index of refraction squared at
rangen and depth]. Matrix F in Eq. (13) is identical to the
F in Eqg. (8) for the zeroth-order pressures. Equatidr)

ey dy propagates the first-order pressure figldhe perturbation to

dv-2 en-1
ev-1 On-1 ey
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the zeroth-order pressure fiefg), with the first-order me- u. Equation(16) is a representation of the inverse problem in
dium perturbation§i, [i.e.,¥(r,z)] acting as a forcing func- a familiar linear system form:

tion. The perturbationgy(z), and matricesB and C, by Fu=p (19
which F and G are represented, can be range dependent. N>
Equation(13) is the tangent linear model for ogotherwise =~ whereF andu are composite matrices.

nonlineal PE model. It is important to keep in mind that the Equation(19) can be solved using either a generalized
tangent linear model and the adjoint model derived from it ininverse ofF,

Sec. IID propagate quantities that are first-order perturba-

0=F*py, 20

tions. P 20
or an iterative steepest descent technique,

0;=0j_ 1+ aF* (Fui_1—pn), (21

C. How adjoint model arises in our PE-based

inversion in which the second term on the right hand side is just the

) ) ) gradient of the squared data-model misfit, scaled by a step
I this section, we combine the sequence of PE marchsjze parameter. Note how the gradient is formed by the
ing steps into a single linear system, and show how the adygjoint F* operating on the data-model misfiti _;—py .

joint of this system back-propagates data-model misfit at the ~ From Eq.(16), the conjugate transpose Bf(the adjoint
observation points back to the points in the medium wherey our linearized PEis

adjustments should be made. The purpose of this section is to

illustrate what an adjoint model does in a very concrete way. A*

We will actually use a more efficient adjoint formulation E* B}E 22)
presented in the next section to solve inverse problems in : '

later sections. N

To simplify notation, we drop the tilde notation that was here the individual matri
used in Sec. IIB to indicate a first-order perturbation and’/"€re the individual matrix
assume all references poandu below are to their first-order Br=—GrFr, - -FR_oFN_1 (23

terms. . . .
Equation(13) generates the following equations, one for can be interpreted as the .tra.msfer_ ma_tr_lx which - back-
each range stefthe subscripts indicate the index of the rangepr.opa_gates the data—mc_)del migpiten |denF|f|ed as the ad-
step: Jomt_ﬁeld) from the receiver at rangd to points back in the
medium at range. Matrix FY_, steps from rang&\ to N
P1=FoPo— Golo, (15  —1. Matrix Fy,_, steps from rangdl— 1 toN—2, and so on,
until at rangen, G} transforms the adjoint field to a medium
property correction at range step(as we will show later
The adjoint of our forward model propagates information
from the observations at the receiver array back to all the

p2=F1FoPo— F1GoUp— G1uy,

Pn=Frn-1Fn—21+-F1FoPo medium properties that we are inverting fae., theu, at all
N-1 rangesn). Note that matrixA* similarly propagates infor-
— > Fno1Fn_2 Fns1Gnln. mation all the way back to the source, where it can be used to
n=0

correct the starter fieldf this is treated as an unknown
We include vectop,, the correction to the presumed starter
field, as an unknown here for completeness. We will only
solve for medium properties in the sections that follow. EachP- Fixed-point iteration to invert for medium
pressure, is a function of all the medium property vectors Properties

Ui, i=1,..n, leading up to it. A matrix representation of In this section, we present an alternative derivation of
this summation is the adjoint model, using Lagrange multipliers. This yields a
p fixed-point iteration, which we relate to a steepest-descent
0 . . . . . .
Uo iteration. To simplify the presentation, as in Sec. IIC, we
_ drop the tilde notation that was used in Sec. II B to indicate
[A Bo By -+ By-4] u:1 ~Pno 16 first-order perturbations and assume all referencgsaodu
are to their first-order terms.
Un-1 The first-order parabolic equation is
where the submatriA is Bns1=Fopn—Gply (24)
A=Fn-1Fn-2Fo, (17 \where the unknown medium propertieg act as forcing
each submatriB, is functions at each range stepof the marching solutiofEq.
24) is the same as Eq13), without the tilda notatio
By=—Fu-1Fn_2*Fns1Gn, ag & 4 b

MatricesF,, and G,, are functions only of the zeroth-order
andpgy and all the individualu, vectors have been stacked pressures and medium properties, and not their first-order
one on top of each other in E(L6) to form the super vector perturbationsp, andu,.
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To solve foru,, we formulate a cost functiod(p,u,\) Setting these partial derivatives to zero yields a system
to be minimized: of equations which are solved to invert for the sound speed
profile. Much of the adjoint literature describes iterative pro-
cesses to solve these equations. It should be emphasized that
the iteration is not something that directly follows in logical
sequence but is simply a proposed approach to solving this
large system. Actually, it is just a so-called fixed-point or
functional iteration(also called a Picard iteratipn

To explain the iteration in those terms, the derivatives in
Eqgs.(26)—(28) are set to zero and rearranged to yield

u,="f(up) (30

1
‘J(pvua)\): z(pN_mN)*(pN—mN)
N
+nZl N (Pn = Fn—1Pn-1+ Gp-1Un_1)

IBNfl
+—2 Ui up. (25)
2 n=0

The first term inJ seeks to minimize the mismatch betweenwith

the measuredhy and modelegy pressure increments, both 1

at range indexN. The data-model misfit in the first term will f(u)=—=G*\ (31)
. . . . . (un n+1-

also contain measurement noisenm, which we ignore, B

since we focus on the underdetermined daggich provides The termG* \,, 1 comes from the back-propagation of the
no redundant measurements that can be used to smooth f€ o ) . with A a function ofpy, andpy itself calculated

solution. Since we are dealing with first-order termmsy is  from u,. The idea of a fixed-point iteration is to pick a
the difference between the measured pressure and the Zerogﬁarting guessy®, and apply a simple recursion:

order pressure prediction. The modeled prespyres calcu- i1 :

lated by propagating,, from the source to the receiver using u=fuh. (32

Eq. (24 [i.e., our tangent linear modgF,,G,} with the  \whether the fixed-point iteration converges or not is often
estimated environmental parametegsas driving function  unclear. However, if it does, then we have solved for the
Given a solution foru,, the zeroth-order pressure plus the spjution of our original equation. In fact, part of the art of
pressure correctiopy calculated usingi, should reproduce  constructing a good fixed-point iteration is to rearrange the
the measured pressure. The second term uses Lagrange Mgiiginal equation into a form where the iteration converges
tipliers A, (vectors at each range, sampled in depthen- s rapidly as possible. For instance, we can obtain a broader

force the hard constraint that the model is perfée., p,  class of iterations by multiplying Eq30) by a and adding
and u, are completely governed by the linearized forwardy on both sides,

model {F,,G.}). The third term is a regularizing term to

minimize the amplitude of the medium property perturba- ~ Unt @Un=Un+af(uy), (33

tionsu,, with 8 a weighting term to regulate how much we which is rearranged as

allow theu, to stray from our assumed zeroth-order values

(Ilater, we will setB to the ratio of the variances of the pres-  Un= Un— a(Un—f(up)). (34)

sure measurements and the medium propgrties Now, « provides a parameter that we can adjust to optimize
Admittedly, this is an unusual way to formulate an in- the rate of convergence. To summarize the fixed-point itera-

verse problem. We have set up a large number of unknowngon in terms of the variables in our problem, we have the

in all the intermediatep,,, in addition to the already large following recursion:

number of unknownsi,. We will show that minimizing the

cost function in Eq(25) is a more direct way of inverting for plntll: an:fl— GnUy (39
the u,, than repeatedly running the forward model to explore N L=my—plit (36)
the surfacel as a function ofu, . N NCEN
Note thatJ is a function ofu,, at all ranges and depths, AFI=pEpEL (37
S0 its minimization can be used to resolve range-dependent Gr it
features. i+1_ i [ ntnti1
The partial derivatives ad(p,u,\) are Un == Un= | U+ B ) (38)
03 In words, we c:alculatepin+1 using our forward model to
o Pn— My+ Ay, (26) propagate pressures from the source to the receiver based on
Pn our current estimate ail, in Eq. (35), initialize A} * at the
23 receiver to the data-model misfiEq. (36)], propagate the
—=Nn—FiNpi1, (270 Nt from the receiver to the source in E@Q7), and calcu-
9Pn late the updated first-order medium propertilﬁél from the
43 updated\|,"* at all range indexes in Eq. (38).
——=BUy+G Nyt (28) Equation (37) represents thedjoint model The \,’'s
Iun form the adjoint field propagated by the adjoint mode} .
5] Equation (36) initializes the adjoint field\y to the data-

(29 model misfit at the receiver. Note the complementary rela-

—=pPp—Fn_1Pn-1+Gp_1Un_1.
I\, P Fn=1Pn-1 ™ B2t tionship between the pressurps, being propagated from
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the source to the receiver by our forward moBg| and the
Lagrange multipliers\,, being propagated by the adjoint
modelF}; backward from the receiver to the source.

A compelling interpretation of the adjoint is that the ob-
served field is a superposition of a baseline field due to the
presumed medium and a perturbed field due to the unknown ¢
medium perturbationgwhich we invert foj. The adjoint £
model back-propagatétime-reversesthe perturbed field to 8
the unknown medium perturbations, which are viewed as
sources of diffractior.

An important insight about this fixed-point iteration is
that it is also equivalent to a descent technique. To see this,
observe that the second term in Eg§4) [also Eq.(38)] is

proportional to the gradient af with respect tai as given in 5 10 15 20 25 30
. . . . . . Index of measured profile
Eq. (28). Thus, our fixed-point iteration is equivalent to an
iteration FIG. 1. Sound speed profiles measured during INTIMATE 96 over a time
interval of roughly 3 days. The sound speed profiles were measured at only
it1_ . @ A approximately regular time intervals, so the horizontal axis shows the index
u "=u-— E E (39 of the measurements. The image scale shows sound speed measured in m/s.

In this form, we see that the parameteplays the usual role

in a steepest descent method of controlling the step size iddjoint technique described in Sec. Il to a seriegasfge-

the descent direction. It is natural in this descent frameworkndependensound speed fields. Section 11l C shows that our

to consider all the standard extensions such as conjugate gradjoint implementation reproduces the tangent linear model

dient technique$® We do not discuss these options further (using far fewer modeling runs than if the forward model

here, but simply note they are part of the standard set otlone were used Section IlID shows how a generalized

techniques used to improve the convergence of the adjoiriiverse of the linearized forward model can be used as an

iteration. alternative to our iterative adjoint inversion, and also how to
The fixed-point iteration equations derived above are ircalculate error bars for these inversion results. Section Il E

terms ofF, and G, which are functions of the zeroth-order applies the iterative adjoint inversion to a range-dependent

medium properties and pressures. As a result, the iterativié@version problem.

process can periodically be relinearized about the current es- The PE model was used to synthesize acoustic pressures

timates foru, in order to update the tangent linear model.to serve as “measured” data in our simulations. Pressures

This enables the process to handle mildly nonlineawere calculated at 400 Hz in Sec. IlIB for the range-
problems. independent case and for a range of frequencies from 100 to

400 Hz in Sec. Il E for the range-dependent cases. The re-
ceiver was a fully spanning vertical line array at a 2-km

1. INVERTING FOR INTIMATE 96 INTERNAL TIDES distance from the source. The source depth was at 50-m
(SIMULATED RESULTS) depth in Sec. IlIB for the range-independent case. Sources

In this section, the adjoint method described in Sec. IIDSPanned 5 to 90 m for the range-dependent cases in Sec.
is tested on synthetic acoustic data calculated for a series of
sound speed profiles measured during the INTIMATE 96 0
experimerft’ during which internal tides were observed. Fig-
ure 1 shows the entire sequence of measured sound spet
profiles, in the order that they were measu(de sampling
in time was not uniform, so indexes rather than time units are
shown on the horizontal ayisFigure 2 shows the entire set 401 Source
of measured sound speed profiles and the source-receiveg
configuration used in our simulation. These profiles were§ 6ol
measured over roughly 60 h. The experiment configuration®
was fixed-fixed. The line joining the source and receiver was
perpendicular to the movement of internal tides during part
of the actual experiment. Such a configuration would sugges
a range-independergound speed field in the plane joining
the source and receiver.

An important step when applying adjoint methods is to 120 e > 7512 1516 1518 1520 1522
ensure that the problem has been linearized, so Sec. Il / misec

compares the pressures calculated by the original PE and tIIﬁf?G. 2. Sound speed profiles measured during INTIMATE 96 and experi-

linearized PE quels, _for the gonfiguration_ to be }Jsed_ tQnental configuration for which acoustic data was synthesized. All inversions
demonstrate the inversion. Section Il B applies the iterativavere performed at a frequency of 400 Hz and a range of 2 km.

Receive
array

1001

laVaYaVaVaVaVaVlaVaVaVaVaVal
\CACATAVAVAV AT LU AW AW AW AW AW AW
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FIG. 3. Perturbed and baseline sound speed profiles used to test linearity oFIG. 5. Magnitude difference between perturbed and baseline pressures.
INTIMATE 96 configuration.

original PB. Figure 5 shows the magnitude difference be-
tween perturbed and baseline pressures calculated by the
original PE [i.e., P(c+&c)—P(c)]. Figure 6 shows the
magnitude difference between both sets of perturbed pres-
sures, those calculated by the original PE and those calcu-
A. Testing our tangent linear model to verify we are lated by its tangent linear modgl.e., P(c+ 8c)—P(c)

in linear regime —F(c) éc, whereF(c) represents the tangent linear model,

Prior to using the adjoint method for inversion it is im- linearized abou¢]. Comparing the images in Fig. 5 and Fig.
portant to assess whether the tangent linear model and ifs(whose color scales are the sgrskows that the perturba-
adjoint are reasonable approximations to the full PE model ifion in pressures due to the change in medium propefities
this experimental configuration. Using the same experimenEig- 9 is always larger than the size of the error between the
tal configuration as in our inversions, we compare perturbaffiginal PE model and its tangent linear modei Fig. 6).
tions produced by our tangent linear model with perturba-This shows that the problem is not too nonlinéaur itera-
tions predicted by the originalnonlineay PE. Figure 3 tive process will relinearize after each iteratipand that our
shows two sound speed profile{z) to be used as a base- configuration is reasonable for testing our iterative adjoint
line, andc(z)+ éc(z) as a perturbed profile. The baseline Process.
profile is the mean profile calculated from the entire set of ~AS we have shown in Secs. IIC and IID, the adjoint
INTIMATE 96 sound speed measurements. The perturbe@r0cess is a local optimization, so if we are outside the so-
profile is one chosen from the measured profiles for its largéution’s “basin of attraction,” there is no mechanism for es-
deviation from the mean profile. Figure 4 shows the pressurgaping a spurious local minimum. This can happen if the
field produced by the original PE model operating on thelnitial guess is too far from the correct solution, or if the
baseline sound speed profile(c), whereP represents the linear approximation being used by the tangent linear model

0

[l E, with each source an independent omni-directional poin
source and not part of a transmitting array.
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FIG. 6. Magnitude difference between perturbed and tangent linear pres-
FIG. 4. Baseline pressure magnitude at 2 km, source depth of 50 m, and atires(would be zero if tangent linear model perfectly predicted the per-
400 Hz. turbed pressuje Compare to differences shown in Fig. 5.
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FIG. 7. “M_easur_ed’_’ pressure was synthesized using P.E with 'true sounq:IG. 8. Evolution of objective function produced by iterative adjoint pro-
speed profilg(solid line). Modeled pressure was synthesized using the PEcess

model with mean sound speed profilgashed ling Real components are

shown in left plot. Imaginary components are shown in right plot. ] ] ) )

approximately regular time intervals, so the horizontal axes

. - . . how the index f the m rements. Th ri I

(and its adjoint fails to reproduce the true cost function. show the f,je €s o t"e easureme ts € uppe eft plot
\ﬁhows the “measured” profilesthe true profiles, in our

Because it relinearizes about its last estimate and can follo . . .
; ) o simulatior). The lower left plot shows the estimated profiles
a nonlinear basin of attraction if started reasonably close tQ

: . . - after 50 iterations at each profile. The upper right plot shows
the true solution, our iterative adjoint process can handl y y : . . )

. . he “true” profiles minus the mean profile. These are the first
slightly nonlinear problems.

order quantities that are being estimated. The lower right plot
shows the difference between the “true” and estimated
B. Adjoint inversions using fixed-point iteration sound speed profiles. Both the upper right and lower right
(range-independent case ) plots have the same scale, so that the estimation errors can be
compared with the quantities being estimated. The estimation
discussed in Sec. 11D is tested sgntheticacoustic data to  €/70rs are significantly smaller. This experiment was repeated
assess the feasibility of inverting for sound speed profiledVith only four receiver elementgusing the same configura-
that indicate the internal tides present during the INTIMATE ion as the INTIMATE 96 experimeniand at a number of

96 experiment. For each measured profile from INTIMATE Signal-to-noise ratiogadditive white gaussian noise was

96, an acoustic pressure vector is calculated by the PE mod@fided at each of the four receiverSimilar results to those
to serve as a *measured” pressure vector for our inversionsShown in Fig. 11 were obtained at SNRs greater than 10 dB.

Each of these “measured” pressures is inverted to estimate i _ i
the sound speed profile used to synthesize it. The mean of the Using ad10|r)t model to construct tangent linear
. . I . . model (range-independent case )
entire set of profiles serves as the initial guess in each inver-
sion. In this section, partly to assess the validity of our adjoint
Before showing the results on the entire sequence oimplementation, we calculate the tangent linear model using
profiles, we show the details of an inversion on a single
profile, profile 28, selected for its comparatively large devia- Re(p) Im(p)
tion from the mean. Figure 7 shows the “measured” pressur¢
(calculated using profile 28nd the modeled pressure upon

In this section, the iterative adjoint inversion process

[~
=

initialization (calculated for the mean profile, used to initial- 20; 1 20r
ize our iterative proce$sA single iteration consists of using
the forward model to calculate a modeled pressure, then ut sl ] a0

ing the adjoint model to calculate a corrected sound spee
profile. Figure 8 shows cost function valuege Eq(25)] at
iterations 1-50. Figure 9 shows the modeled pressures arg
the measured pressures after 50 iterations. Figure 10 shows
comparison between the true and estimated sound speed p 8o} ; 8o}
file perturbationgi.e., after 50 iterations

The inversion shown in detail for profile 2@ Figs.
7-10 was repeated at each of the profiles measured durin
the INTIMATE 96 experiment. Figure 11 shows the inver-
sion results for the entire set of INTIMATE 96 sound speed
profiles. The sound speed profiles were measured at only FIG. 9. Measured and final estimated pressure magnitudes.

pth(m)

100 1 100

-0.5 0 0.5 -0.5 0 0.5
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0 ' ' ' ; ' ' ' whereF* is the adjoint modelsee Eqs(37) and(38)] and
P;=ag . The conjugates of vectot§ are put into the rows
201 of a new matrix,FA%°™, TheTj; are often called the repre-
senter adjoints, which must be calculated prior to calculating
wl the representers themselves in a process which converts the
E inverse problem from a two-point boundary value problem to
r=4 a linear algebraic problem in which the solution is expressed
3 sor as a linear combination of representéts.
@ We compared the left eigenvectors and singular values
Q . (calculated by a singular value decomposiiiaf Fo™ar
. with F39°" 5 assess how well the adjoint model reproduced
100l . | the tangen.tllinear.model calculated t_)y. the unperturbed PE.
2. At the significant eigenvectors, the adjoint model was able to
reproduce the eigenstructure of tAE™2" matrix 28
129

X5 o 05 0 05 1 15 2z 25 3 35
m/sec

FIG. 10. True and final estimated sound speed profile perturbations. D. Ge_nerallzed 'nvers_e solution and posterior
covariances (range-independent case )

. I . In this section, we use the representer adjoints calculated
our adjoint model and compare it with a tangent linear model| . . . .
. . . - in the previous section to calculate a generalized inverse so-
calculated in a brute force fashion using the original PE. If

. . . lution, as discussed in Sec. Il C. We show this calculation as
our tangent linear moddf is M by N (M observationsN . . : . .
7 : L a final correction to the estimate produced by our iterative
waveguide parameterswe will use M runs of our adjoint

model to calculate th# rows of F instead of usindN runs adm_mt process in sec. I B but It could in principle replace
: the iterative adjoint-based inversion. We also show how the
of our forward model to calculate th¢ columns ofF. This

. . . . . representer adjoints can be used to calculateptisteriori
comparison is made at one of the profiles estimated in Sec, b ) P

1B (profile 28. With a much larger number of medium Covariances of our sound speed estimates, given prior cova-

. - -, _riances for our pressure measurements and medium proper-
properties than measurements, the adjoint model provides a

) . tles. All the calculations in this sectiofas in the previous
much less computationally demanding means of calculatin . ' . .
) . ) ection are performed at profile 28, estimated in Sec. Il B.
the tangent linear model. As we will show in Sec. IlI D, such

. ) Prior knowledge of measurement and medium property
a tangent linear model can be used to form a generalized o . : . .
) . : . error statistics is typically incorporated into the cost function
inverse solution to the inverse problgam alternative to the

. . we seek to minimize using covariance matri€s(for pres-
iterative process we have demonstrated apavel to calcu- 9 : (for p .

. . sure measurement erropg and C,, (for medium properties
late error bars around the inverse problem solution.

: . u). These covariance matrices map the data vector space and

The tangent linear model is the matfixwhose element . : )

. . . ; odel vector space to their dual spaces, enabling a consistent
Fii is theith observed pressure due to a unit perturbation o : T . )

57 . : ormulation of the optimization in terms of a gradidgmthich

the jth index of refraction squared value. Thus, if we use the ; ;

. ) L ; . is an element of the dual spac@ Although incorporating
configuration of source and a vertical line receive afes/in

; more realistic covariances is usually necessary in practical
our simulated examp)ea column ofF can be calculated by o R ;
i applications, we will simplify the material that follows by
two runs of our unperturbed PE model:

assuming the covariances are scaled identity matrices:
fi=P(u+T)—P(u), (40) Co=03l, Cy=ail, (42)

where f; represents théth column of F, and P(u) repre- and useB8= oS/aﬁ to represent our prior expectation of the
sented the pressures calculated at the receive array elemergdative accuracy of our measurements compared with that of
by the original PE model using medium propertiesThe  our baseline medium properties. For high SNR, wegsietwv
perturbation inu is T;= ag , whereg is theith elementary (o, small compared withr,), allowing ouru estimates to
basis vectofhaving a one at itsth element and zeros at all stray further from our prior expectatiorithe zeroth-order
other elements and « is a scaling factor small enough to medium propertigs Note that although we have not explic-
keep the model linear. Eadhis a vector of pressure pertur- itly included measurement errors in E@5), it is addressed
bations at the vertical line receive array elements due to thimplicitly by 8, (and in general bfZ, andC, when they are
perturbation ofu at itsith element. The matrik is rescaled not scaled identity matrices
by dividing it by «, to compensate for the earlier scaling of Defining a cost functiod(u) in terms of the data-model
the index of refraction perturbatioris . (;%/F WL” call the  misfit and norm ofu (to penalize large),
matrix calculated using the forward modgf™2. _ _
For the adjoint approach, we run the adjoint model to Jw= %(Fu_mN)*CP H(Fu=my)+ 3u* Cy u, (49
calculate the sound speed correction that would reproducsetting the gradient ad(u) to zero, and solving fou pro-
pressure perturbations at each individual receiver, duces

T = F* (B, (41) u=(F*C,'F+C; Y F*C, 'my, (44)
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in which the matrix inverse is performed in the space ofcorrection to our previous estimate Figure 12 shows the
model parameterganalogous to a least-squares solution ifadjoint solution from the previous section, the true solution,
the regularizing ternC,, 'u is omitted. An alternative form, and the solution refined by the generalized inversg ofAt
U= C,F* (FC,F* +Cp)‘1mN, (45) almqst all _depths, the generalized inverse has improved the
adjoint estimates.
enables the matrix inverse to be performed in the data space To calculate error bars for our estimatesupfve assume
(analogous to a minimum-norm solutioriThese solutions uncorrelated Gaussian errors and that our estimate is close to
both involve the calculation of a potentially expensive gen-the true sound spee@o that a linear assumption hojds
eralized inverse—the choice can be made by which of th&Vvhen this is the case, th@osteriorerror covariance matrix
two spaces, model or data, is smaller. (of the medium property estimation errpris defined in
The inversions in Sec. Il B produced estimatesiagind  terms of a prior pressure measurement covariacend a
residual errorgip (data-model misfit after 50 iterationsSet-  prior medium property covariance matitx, as
ting C, andC, to be scaled identity matrices aytito 103
in Eq. (45), we substitute’p for my and calculateu, a final R,=(F} C,lequ c,hH? (46)

or, in the space of measurements,

0 . :
R,=Cy— CUFS (FuCuFLc + Cp)_lFuCu . (47)
20f 1
SettingC, andC, to scaled identity matrices, setti
il _ | to the mean s_quared re_sidugl er(be., the data-mogje mi_sfit
-é- i — from the. adj(;lnt-based iterative inversion after 50 _|terat)ons
=4 e and settings;, so thatB was 25, we calculateR, using EQ.
2 o = =+ direct inverse 1 (46). Using the residual errors to set the prior covariance
8 would not be justifiable with real dat@his variance should
80t 1 represent priori knowledge of the measurement system ac-
curacy, but seemed a reasonable way in this illustrative
100t | simulated example to set a representative level for these vari-
ances.
Figure 13 shows the true sound speed, the adjoint esti-
120, 1 2 3 a mate for the sound speed, and bounding curves three stan-
m/sec dard deviations above and below the adjoint estimate. The

standard deviations are the diagonal element&Rpf The

FIG. 12. Gray line shows sound speed estimate produced by iterative adjoint; o _
process. Black line shows the true sound speed. Dashed line shows the res%’lgenvecmrs ORU are the prInCIpaI components of the er

of using generalized inverse to further reduce the residual errors from oufOrS, and can be plptteql to ShOV\_’ the Sp_E?tiEﬂ correlation of the
iterative process. errors. Becaus€,, is diagonal, its addition only serves to
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) . . . FIG. 15. Image of 2D feature at 1000 m after a single iteration of the adjoint
FIG. 13. S_ound speed estimates with error Heegative to baseline sound process. Image scale shows magnitude of the correction to be applied to the
speed profilg sound speed field.

modify the eigenvalues d®, and not its eigenvectors, caus-
ing the eigenvalues dR, to increase or decrease according
to changes ins?.

applying a Gaussian weighting centered at this interval. This
interval covers profiles 16—18 in Fig. 11. Working with an
isolated 2D feature enabled us to translate this structure to
o _ different rangeg500, 1000 and 1500 mso that we could

E. Adjoint inversions  (range-dependent case ) compare our ability to image it at these different ranges.

In Sec. Ill B, we inverted for range-independent sound  The parabolic equation model described in Sec. Il was
speed perturbations. In this section, we invert for rangeused to generate synthetic acoustic data on the receive array
dependent sound speed perturbations. To construct a rangésed in previous sections, for sources at depths from 5 to 90
dependent test case, we treat the time sequence 61 in 5-m steps at 100-400 Hz in 5-Hz steps. In contrast to
INTIMATE 96 sound speed profiles as a sequence of profileghe results in Sec. 1l1 B, where the calculated sound speed
spanning a range interval. Figure 14 shows the rangecorrections were averaged over rangsince range-
dependent sound speed perturbation we will be imaging witfindependent sound speed fields were being inverteg for
our adjoint modelthis is a perturbation from the mean pro- €ach source depth and frequency here produced a 2D map of
file). This 2D sound speed perturbation was generated in twgound speed corrections versus range and depth. Several
steps. First, the sequence of INTIMATE 96 profiles was in-combinations of source depths and source frequencies were
terpolated to cover 2 km in range with a 1-m spacing be-used to calculate inversions for the range-dependent sound
tween profiles. Second, we isolated a short range intervaipeed perturbation shown in Fig. 14. Using only a single

where a large deviation from the mean profile occurred, bysource depth resolved the location of the range-dependent
feature, but did not resolve the shape very well, producing

only several highlights within the shape. The positions of

these highlights changed with source depth. Using multiple

frequencies did not improve the results as much as using
multiple source depths, probably because it is more impor-

tant to adequately sample the feature with acoustic paths than
to use a wider bandwidth. Changing the frequency of the

ranging signal does not appreciably change the acoustic
paths visiting the 2D feature being imaged.

Figure 15 shows the summation of maps from all source
depths (5-90 m in 5-m incrementsand all frequencies
(100-400 Hz in 5-Hz incrementsOnly a single iteration of
the process applied in Sec. Il B was used. Figures 14 and 15
show the adjoint model has imaged the 2D feature at 1000
m. Further iterations would better resolve the shape and pro-

5 S o e e duge an amplitude t_ha.t bettgr matches that shown in Fig. 14.
Range(m) This feature was similarly imaged when translated to 500

and 1500 m(although these results are not shgwn
FIG. 14. Range-dependent sound speed perturbation being imaged by ad- This shows that an adjoint model can produce a 2D map

joint process. This figure shows the range-dependent feature being imaged aj

1000 m. Image scale shows magnitude of perturbation in sound speed meQ} large dimension using a single pass of the adjoint model.

sured in m/s. However, there is no guarantee that the map of corrections

20}

40}

60

Depth{m)

80

1001
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produced by the adjoint model is unique. With too few mea-tions. A fixed-point iteration results from this formulation,
surementsge.g., too few source depthst is conceivable that which we have shown is equivalent to a steepest-descent
many 2D maps of corrections could be found to reproduceteration based on a gradient, calculated from the “adjoint
the same data-model misfit at the receive array. If the inversield” back-propagated by the adjoint model.
problem has multiple solutions, the adjoint process provides As a demonstration of these techniques, we have applied
no indication that a solution it has found is not unique.our fixed-point iteration to the series of sound speed profiles
Analysis of the matrix used to linearize the probl¢emg., measured during the INTIMATE 96 experiment. We use
Eqg. (19)] and its null space could be used to alert us to thisacoustic “data” calculated by our PE model with the mea-
ambiguity. sured sound speed profiles provided as inputs. We invert the
These results also rely upon the range-dependent sourfdynthetig acoustic “data” for the sound speed profiles, to
speed perturbation being small enough that our initial guesdemonstrate our technique. We have shown successful inver-
(the mean profile, as defined in previous sectiagssn some  sions for both range-independent and range-dependent sound
neighborhood of the objective function minimum. An initial speed features. For the range-independent case we have also
guess too far away from the true profile could result in theshown how to provide estimates of the accuracy of our
inversion process getting trapped in a spurious local miniresults.

mum. The adjoint-assisted inversion presented in this paper
can be viewed as a wave-theoretic approach to tomography,
IV. CONCLUSIONS and thus may provide an alternative to ray-based tomography

As we have shown above, an adjoint model propagate§nd its shortcoming®’ However, we recqgr_ﬂze that rely_ing
the data-model misfitwhich is often identified as the adjoint upon pressure as the observable quaniity is problematic, and

field) back through the medium and calculates the perturbar-loloe in the future to extend the adjoint formulation to more

tions to the forward model inputs needed to correct for thismbuf‘t otbser}/ablest.h . ion that adioint modeling i
misfit. The adjoint model generates a sensitivity map of the estwe leave the impression that adjoint modeling 1S a
model parameters,, to the observationsny, providing a panacea for all inverse problems, we describe some difficul-
direction for steepest descent in inverse problems. The aIteP—esdtr;at TUSt bi overc;onlle n sdjo'{]ﬁ modellmg. Anfadjowzjt
native is to repeatedly run the forward model to test how™MOC€! ONY WOTKS periectly when he anajogous forwar
each possible perturbation in the model paramatgiisfiu- model is linear. This has not inhibited the use of adjoint
ences the observablesy . The adjoint model can thus pro- models in other fields, since mildly nonlinear problems can
vide a more economical way of exploring the search spac pically be linearized ar_1d more_than slightlyb‘l%%nlinea_r prob-
(of model parameters,) in aid of solving inverse problems. ems can be attacked W.'th lterative formulati in which

The computational savings of using an adjoint model in-2" adjoint model remains a valuable component. .N_everthe—
creases with the number of unknowns in the problem bein ess, some problems will not lend themselves to adjoint mod-

addressed, since each unknown in the problem presents gng, bepause of the.ir.inherenF nonlinearity. The.adjqint
potentially distinct perturbation that must be assessed by thE"athOd finds a local minimum, with no guarantee of it being

forward model. As a result, inversion processes using an aoqlobally OF’“ma' in problems whose objectivg fu'nctio.n Is not
joint model can accommodate large-dimensional problems?onvex' Like o'Fher local metho_ds_, the adjo_mt_ |te_rat|ve pro-
ess may require a more sophisticated optimization strategy

without demanding lower-dimensional representations, ofteg ‘ugat dienti the simple st td i
required by alternative inverse methods in order to reduc e.g., conjugate gradien € simple steepest descent pre-

the number of forward modeling runs needed to explore thgentgd in the paper converges tpo slowtlye f.'X.Gd point
search space. iteration may not converge at allFinally, an adjoint model

To show how an adjoint model arises in the familiar poses the burden of requiring additional implementations of

setting of solving a linear system, we have shown how first-bOth a tangent linear and an adjoint model, over and above

order perturbations to the PE marching solution can be for'Ehe implementation of the forward model. Efforts are under-

mulated as a linear system and solved using a steepest d¥2Y to automate the construction of such models from the

scent iteration, where the adjoint of the linear system is us,ear'g'nal forward model cod#:
to calculate the gradient. The steepest-descent iteration pro-
vides an alternative to calculating the inverse of a typicalyACKNOWLEDGMENTS
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