
Modeling broadband ocean acoustic transmissions
with time-varying sea surfaces

Martin Siderius and Michael B. Porter
HLS Research Inc., 3366 N. Torrey Pines Ct., Suite 310, La Jolla, California 92037

�Received 2 October 2007; revised 11 April 2008; accepted 15 April 2008�

Solutions to ocean acoustic scattering problems are often formulated in the frequency domain,
which implies that the surface is “frozen” in time. This may be reasonable for short duration signals
but breaks down if the surface changes appreciably over the transmission time. Frequency domain
solutions are also impractical for source-receiver ranges and frequency bands typical for
applications such as acoustic communications �e.g. hundreds to thousands of meters, 1–50 kHz
band�. In addition, a driving factor in the performance of certain acoustic systems is the Doppler
spread, which is often introduced from sea-surface movement. The time-varying nature of the sea
surface adds complexity and often leads to a statistical description for the variations in received
signals. A purely statistical description likely limits the insight that modeling generally provides. In
this paper, time-domain modeling approaches to the sea-surface scattering problem are described.
As a benchmark for comparison, the Helmholtz integral equation is used for solutions to static,
time-harmonic rough surface problems. The integral equation approach is not practical for
time-evolving rough surfaces and two alternatives are formulated. The first approach is relatively
simple using ray theory. This is followed with a ray-based formulation of the Helmholtz integral
equation with a time-domain Kirchhoff approximation.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2920959�
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I. INTRODUCTION

For many sonar applications, scattering is treated as an
effective loss mechanism and Doppler shifts are often ig-
nored. This may be reasonable for certain types of sonar
systems, particularly the low frequency ones. However, new
underwater acoustic systems, including those for underwater
acoustic communications, are sensitive to both scattering
losses and Doppler. In particular, channel equalizers used
with bandwidth-efficient, phase-coherent communications
methods can be extremely sensitive to Doppler spread. De-
signing these equalizers to compensate for Doppler often
presents a substantial challenge. Significant Doppler spread
can be introduced simply from the sound interacting with the
moving sea surface; however, the effects are much greater
when the source and receiver are also in motion. Simulating
signals using a physics-based model can greatly aid in the
development of new algorithms and provide valuable perfor-
mance predictions. Two simulation methods for signals that
interact with a time-varying, rough sea surface will be de-
scribed in this paper. First, a simple technique is proposed
that includes Doppler effects due to source/receiver and sea-
surface motion. This is an extension of an earlier work that
was developed to simulate active sonar receptions on moving
marine mammals.1 The need for comparisons as well as de-
termining the limitations of this approach led to the second
technique, which uses an implementation of the time-domain
Kirchhoff approximation.

This paper is organized as follows. In Sec. II, the Makai
experiment is described, which is useful in motivating the
problem by presenting measurements of Doppler-sensitive

signals that have interacted with the moving sea surface. In
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Secs. III and IV, a ray-based approach is used to model mov-
ing sources/receivers as well as a slowly varying sea surface.
To model interactions from finer scale sea-surface roughness,
Sec. V describes the time-harmonic approach using the
Helmholtz–Kirchhoff integral equation. This approach is ex-
act for two dimensional problems with a line source. This
section also provides an implementation of the Kirchhoff ap-
proximation, which is numerically much less demanding
than the integral equation. The described methods are devel-
oped for line sources but the applications of interest are bet-
ter modeled with point sources. Therefore, in Sec. VI, the
conversion of line source solutions to point source solutions
is described. Finally, in Sec. VII, the time-domain solution is
developed for rough surfaces that move in time by using the
time-domain Kirchhoff approximation.

II. THE MAKAI EXPERIMENT

The motivation for the modeling techniques developed
here can be illustrated with data collected during the Makai
experiment which took place from September 15 to October
1, 2005 near the coast of Kauai, HI.2 The site has a coral
sand bottom with a fairly flat bathymetry that was nominally
100 m. The water column was variable but typically had a
mixed layer depth of 40–60 m and was downward refracting
below. The data were measured on September 24th using
both stationary and towed sources �from R/V Kilo Moana�.
The sources were programmable, underwater acoustic mo-
dems developed at SPAWAR Systems Center �referred to as
the Telesonar Testbeds, T1 and T2�.3 Signals were received
on the AOB array, which is an autonomous system developed

at the University of Algarve, Portugal. The AOB is a drifting
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eight-element self-recording array that resembles the size
and weight of a standard sonobuoy.4 The experiment geom-
etry and bathymetry are shown in Fig. 1. Figure 2 shows a
ray trace of the T1-AOB acoustic paths. The paths are num-
bered on the figure and correspond to �1� direct bounce, �2�
surface bounce, �3� bottom bounce, �4� surface-bottom
bounce, and �5� bottom-surface bounce. The different path
directions have sensitivity to different velocity components.
The higher numbered paths are more Doppler sensitive to the
vertical velocity components �e.g., from the moving sea sur-
face� and the lower numbered paths �e.g., direct path� are
more sensitive to the horizontal velocity components �e.g.,
from the source or receiver motion�.

A binary-phase-shift-keying �BPSK� transmission was
used to analyze the channel.5 This waveform is commonly
used for communication transmissions but for this analysis, it
is simply a highly Doppler-sensitive signal that can separate
the multipath in time and Doppler spaces. The transmission
used cycles of a 9.5 kHz sinusoid with phase shifts intro-
duced to represent a string of 1’s and 0’s defined by an m
sequence.5 This signal uses an m sequence �size 1024� with
1500 chips /s. The total length of the sequence was 0.682 s.
In a static situation, using a matched filter on this waveform
produces an estimate of the channel impulse response. How-
ever, in situations with source/receiver and/or sea-surface
motion, each path can have a different Doppler shift �due to
the angle-dependent propagation paths�. A single Doppler

FIG. 1. �Color online� Bathymetry near Kauai with the positions of the AOB
vertical array and the Telesonar Testbeds T1 and T2 at 01:00 on JD 268. T1
was about 600 m away from AOB and being towed while T2 is about
2.8 km away and is stationary.
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shift can be applied to the BPSK signal before the matched-
filter process. By sweeping over a variety of shifts, the Dop-
pler for each received arrival can be estimated. The resulting
picture provides an estimate of the so-called channel scatter-
ing function.5 This is referred to as an estimate since a true
scattering function requires knowing the continuous time
evolution of the impulse response. This is a difficult mea-
surement to make since, in practice, the estimate of the im-
pulse response requires time. The described method to esti-
mate the scattering function does, however, provide the
essential information about the relative arrival times of the
multipath and how each is Doppler shifted.

Examples of the processed scattering functions at two
ranges from the Makai experiment are shown in Fig. 3. Each
horizontal trace in the figure results from a matched-filter
process using different Doppler-shifted replicas denoted s̃ j�t�.
The index j corresponds to applied Doppler shifts according
to the shift factor 1−v j /c, where v j is the assumed speed and
c is the reference sound speed. The Doppler replicas, s̃ j�t�,
are matched filtered against the received time series.6 That is,

rj�t� = �
+�

�

p���s̃ j�� − t�d� , �1�

where p��� is the received time series and rj��� is the
matched-filter output. In this way, rj�t� is indexed over time
and Doppler and each multipath arrival produces a peak
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FIG. 2. Ray trace between testbed T1 and the AOB array. The various paths
are labeled �1� direct, �2� surface bounce, �3� bottom bounce, �4� surface-
bottom bounce, and �5� bottom-surface bounce.

.41

FIG. 3. �Color online� Left panel shows the measured
impulse response �or scattering function� for various
Doppler shifts indicated on the y axis �as relative speed
in m/s� between the drifting AOB and the stationary T2
at 01:04 on JD 268. Each bright spot corresponds to an
arrival with delay time shown along the x axis. Right
panel is for a reception from the towed source T1 at
01:02 on JD 268.
(s)
0
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when the Doppler shift of the replica is matched with that
arrival.

In the left panel of Fig. 3, the measured scattering func-
tion is shown for a 2.8 km range separation between the
fixed Testbed T2 and the drifting AOB. The second measured
scattering function is shown in the right panel and is from the
towed Testbed T1 and received on the AOB about 600 m
away. The bright spots indicate an arrival in time �i.e., delay
time� along the x axis. Note that only the relative time is
known so the time series are aligned based on the first arrival
and the known distance between the source and receiver. The
y axis shows the relative speed �i.e., Doppler� that corre-
sponds to the peaks. The left panel had the stationary source
and the Doppler indicates that the AOB was drifting at about
0.1–0.2 m /s. The estimate from GPS positions indicated
about 0.12 m /s. The first arrivals show decreasing Doppler
followed by the last visible arrival having an increased Dop-
pler shift. For horizontal velocity one expects the later arriv-
als to have decreasing Doppler shifts due to higher propaga-
tion angles relative to the direction of motion. The high
Doppler on the last arrival implies a component in the verti-
cal which would introduce larger shifts for late arrivals. The
right panel of Fig. 3 shows the reception from T1 which was
being towed with relative speed between T1 and the AOB of
about 1.2–1.4 m /s. The estimate from GPS positions is
1.24 m /s. Like the stationary case, Doppler shifts do not
decrease monotonically on the steeper paths but, in some
cases, increase. The paths can be identified using the ray
trace in Fig. 1. The second and fourth arrivals both have
increased Doppler shifts relative to the direct path while the
third arrival has a slightly decreased Doppler. Paths 2 and 4
correspond to the surface and surface-bottom bounce paths
while the third arrival is the bottom bounce. Note that in both
figures, only the first few paths are visible; the later arrivals
are more attenuated due to surface/bottom interactions.

In the context of acoustic communications, the spread
factor is often used to determine the type of channel and
therefore the signaling waveforms. The spread factor is de-
fined as TmBd where Tm is the multipath time duration �s� and
Bd is the Doppler spread �Hz�. If the spread factor is less than
1, the channel is said to be underspread, and if it is greater
than 1 it is overspread. It can be highly useful to model the
effects that influence the channel spread as this can lead to
acoustic communication improvements as well as perfor-
mance prediction. While the spread factor is a simple metric,
it does not give a complete description. For example, does
the multipath consist of many arrivals or just a few? The
information given in Fig. 3 show not only the multipath de-
lay and Doppler spread but also show the total number and
strength of the arrivals. In this example, the spread factor is
relatively large but the total number of arrivals is small �i.e.,
sparse channel�. All of these factors are important for com-
munications and correct modeling of these is the primary
goal of this work. Modeling techniques that can be applied in
estimating the multipath delay and Doppler spread are the

topic of the next sections.
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III. MODELING SOURCE AND RECEIVER MOTION
WITH RAYS

In this section, a relatively simple implementation of
two dimensional ray methods is extended to treat moving
receivers and a moving sea surface. The goals are somewhat
similar to the work of Keiffer et al.7 but the approach is
different, and the emphasis is on broadband signals for ap-
plication to underwater communications, for example. In a
ray formulation, the complex pressure field, P���, can be
represented as a sum of N arrival amplitudes An��� and de-
lays �n��� according to

P��� = S����
n=1

N

Anei��n, �2�

where S��� is the spectrum of the source. The specifics of
the ray trace algorithm are not critical and there are a number
of ray trace models that could have been used here. A sum-
mary of most of these type of models can be found from
Etter8 and Jensen et al.9 In the cases considered here, an
azimuthally symmetric geometry is assumed and the arrival
amplitudes and delays are computed using the two dimen-
sional Gaussian beam implementation in the Bellhop
package.10,11

According to the convolution theorem, a product of two
spectra is a convolution in the time domain. This leads to the
corresponding time-domain representation for the received
waveform, p�t�, which is often written as

p�t� = �
n=1

N

An�t�s�t − �n�t�� , �3�

where s�t� is the source waveform. This expression shows
how the sound is represented as a sum of echoes of the
transmission with associated amplitudes and delays. A time
dependency has been introduced in the amplitudes and de-
lays to allow the channel to be time varying. The time varia-
tions can be caused by many factors including source/
receiver motion or sea-surface changes.

The situation is a bit more complicated because the am-
plitudes in Eq. �3� are actually complex numbers. This is
due, for example, to bottom reflections that introduce a phase
shift �e.g., a � /2 phase shift�. Since this is a constant phase
shift over frequency, it does not simply introduce an addi-
tional time delay. Therefore, a more careful application of
the convolution theorem is required:

p�t� = �
n=1

N

Re�An�t��s�t − �n�t�� − Im�An�t��s+�t − �n�t�� ,

�4�

where s+=H�s� is the Hilbert transform of s�t�. The Hilbert
transform is a 90° phase shift of s�t� and accounts for the
imaginary part of An. An interpretation of Eq. �4� is that any
arbitrary phase change is treated as a weighted sum of the
original waveform and its 90° phase-shifted version. The
weighting controls the effective phase shift.

One of the goals of this work is to simulate the received

field in cases where the receiver and/or sea surface is in
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motion. In those cases, the arrival amplitudes and delays in
Eq. �3� change continuously in time. Therefore, new values
for An and �n are required at each time step of the signal
transmission. In theory, at each time step, a new set of arrival
amplitudes and delays could be computed with an entirely
new ray trace from the source to the exact receiver location
at that particular time step. However, this would be compu-
tationally expensive and mostly unnecessary since the
changes �in amplitude and delay� are likely to be very small
between time steps. Alternatively, the ray amplitudes and de-
lays are computed on a relatively sparse grid of points in
range and depth. The ray information at any given location
and time is computed through interpolation. The interpola-
tion scheme is critical to avoid glitches in the final time
series that might be caused by jumping too suddenly between
points in the computational grid.

The interpolation of ray amplitudes and delays may ap-
pear simple enough but there are some subtleties which can
cause difficulties. Consider four neighboring grid points as
shown in Fig. 4 where at some particular time step, the re-
ceiver is located somewhere inside those points. The most
straightforward way one might think to calculate the field at
this interior point is to identify the same arrival on each of
the four corners and then interpolate that arrival amplitude
and delay from the four grid points to the receiver location.
A problem with that approach occurs when arrival patterns
on one grid point do not correspond to those at another. That
is, reflections and refraction effects can cause a different
number of rays and different ray types on each of the grid
points. For example, consider a direct arrival on one corner
of the grid that is refracted away from another grid point. In
this case, interpolating between these grid points for that
arrival number may involve interpolation of a direct path
with a bottom bounce path and this will produce incorrect
results.

One could keep careful track of all rays and ray types to
ensure proper interpolation but that can lead to excessive
bookkeeping and storage. Instead, a different interpolation
approach is used here. The amplitudes at the four grid points
are maintained as separate quantities and their corresponding
delays are adjusted by the ray path travel time differences
between the corners of the computational grid and the point

Point at (x, y)

Amplitude a1 at (x1, y1)

Amplitude a2 at (x1, y2)

Amplitude a

Amplitude

∆x

∆y

θ

of the receiver �x ,y�. The geometry is shown in Fig. 4 with
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an arrival indicated as a dashed line traveling at angle � at
the lower left grid point. The delay time for that arrival is
adjusted from position �x1 ,y1� to position �x ,y� by the dis-
tance divided by sound speed,

�delay = ��x cos � + �y sin ��/c , �5�

where, for example, �x=x−x1 is positive �increased delay�
for position 1.

The contribution of the arrivals from each of the grid
points is weighted according to

�1 − w1� � �1 − w2� � a1,

�1 − w1� � w2 � a2,

�6�
w1 � w2 � a3,

w1 � �1 − w2� � a4,

where a1, a2, a3, and a4 represent the arrival amplitudes at
each corner and the weights are

w1 = �x − x1�/�x2 − x1� ,

�7�
w2 = �y − y1�/�y2 − y1� .

Thus, w1 represents a proportional distance in the x direction
and w2 represents a proportional distance in the y direction.
To summarize, the received field is constructed using Eq. �4�
with an additional sum over each of the four corners
�weighted amplitudes�.

A. Test cases for source/receiver motion

The previous section presented the method and here, a
few examples are given to illustrate the model at low and
high frequencies. The first example will illustrate the quality
of the ray interpolation. A tone is transmitted at 350 Hz from
a source at a depth of 30 m �i.e., continuous wave or �cw��.
The environment has a linearly decreasing sound speed that
is 1500 m /s at the surface and 1490 m /s at the seabed at
100 m depth. The seabed has a compressional sound speed
of 1600 m /s, density of 1.5 g /cm3, and attenuation of
0.1 dB /� �decibels per wavelength�. In Fig. 5 is a static fre-

x2, y1)

(x2, y2)

FIG. 4. Four points of the computational grid for a ray
trace. The actual arrivals are computed at the four cor-
ners and any point in the interior computed through
interpolation of the amplitudes and extrapolation of the
delays. A sample arrival is shown traveling at angle �.
4 at (

a3 at
quency domain solution for the transmission loss �TL� out to
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5 km in range �i.e., a standard TL calculation�.9 Next, the
time-series simulator records the pressure field on a receiver
that sweeps out the same 5 km range in time. By using 100
of these receivers placed at 1 m increments in depth, the
entire range-depth volume is swept out over 100 s �each re-
ceiver moves from 0 to 5 km over 100 s�. The amplitude of
these time-series data are plotted on a decibel scale in Fig. 6.
For this simulation, a single ray trace computed the arrival
amplitudes and delays at each point in a grid of 1 m in depth
and 100 m in range. Each moving receiver was placed at
depths in between these grid points to ensure all computed
values were from interpolation rather than exactly falling on
grid points. Even for the relatively large grid spacing, the
technique produces a good result when compared to the cw
TL in Fig. 5.

The second example is for a higher frequency transmis-
sion at 10 kHz and illustrates the interpolation as well as the
Doppler effects. The environment is the same as for the first
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FIG. 5. �Color online� Frequency domain �350 Hz� TL calculation �dB� over
range and depth with the source at a depth of 30 m.
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FIG. 6. �Color online� Same as Fig. 5 except calculated using the time-
domain approach. That is, a set of moving receivers sweep out �in time� the
acoustic TL. Note the different x axes between this figure and Fig. 5. At this
low frequency, the Doppler shift is not significant enough to noticeably

change the TL.
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example, but a slightly denser grid is used for the ray calcu-
lation due to the higher frequency �0.5 m depth spacing and
50 m range spacing�. This is still around three wavelengths
in depth and several hundred wavelengths in range between
grid points. A single line of pressure amplitude is shown in
the upper panel of Fig. 7 at a receiver depth of 50.25 m
�between grid points� and is compared to the cw calculation.
The moving receiver speed is 10 m /s and this introduces a
Doppler shift of around 67 Hz �moving away from the
source horizontally�. From the agreement in the pressure am-
plitudes �between static and moving�, one might incorrectly
assume that the Doppler effects are of little importance.
However, various acoustic systems may be significantly im-
pacted by Doppler. For example, the spectrum of the re-
ceived time series is shown in the lower panel of Fig. 7. The
spectrum shows the direct path shifted by the expected
67 Hz as well as a set of less Doppler-shifted peaks due to
the multipath that travels more vertically than the direct path.
This type of Doppler spread is one of the primary mecha-
nism that cause channel equalizers to fail in coherent com-
munication schemes �i.e., coherent acoustic modems�.

IV. MODELING TIME-VARYING SEA SURFACES

The previous section only considered the motion of the
receiver. This could also approximate the solution for the
case when both source and receiver are moving horizontally
�possibly at different speeds� in a range independent environ-
ment. A time-varying sea surface can be added to the model
�with receiver motion only� with slight modifications. In this
case, the sea surface is assumed to vary slowly in range as
might be the case for swell, ignoring small scale roughness.
This limitation will be explored further in the next sections
when the rough, time-varying surfaces are considered. To
modify the previously described algorithm, additional ray
traces are computed to sample the time-evolving sea surface.
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FIG. 7. �Color online� Top panel shows the cw solution vs range and the
time-series solution vs time as the receiver moves out in range. The corre-
sponding range and time x axes are indicated. The lower panel shows the
spectrum of the time-series solution with the Doppler shifts which differ for
the various paths.
Figure 8 diagrams the required interpolation scheme to in-
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∆

clude surface motion. At an initial time, t= ta, the surface can
have an arbitrary shape and this evolves in time to produce a
surface shape defined at time t= tb. The time interval to
sample the surface adequately is on the order of the time
interval of the swell being modeled. This is typically much
less than the sampling interval for the acoustic transmission.
Therefore, ray arrival amplitudes and delays are computed
for surfaces at t= ta and t= tb and trilinear interpolation is
used in much the same way as described previously with
bilinear interpolation. One difference is that the delays are
not extrapolated for this third dimension. The proper arrival
amplitudes and delays are simply determined through the
weights applied to the eight corners of the computation grid.
As with the previous two dimensions, the arrivals are kept as
separate quantities on each of the eight corners of the cube
depicted in Fig. 8. The delays at each corner of the cube are
advanced or retarded according to distance and the weight
given to each corner is determined by

�1 − w1� � �1 − w2� � �1 − w3� � a1,

�1 − w1� � w2 � �1 − w3� � a2,

w1 � w2 � �1 − w3� � a3,

w1 � �1 − w2� � �1 − w3� � a4,

�8�
�1 − w1� � �1 − w2� � w3 � b1,

�1 − w1� � w2 � w3 � b2,

w1 � w2 � w3 � b3,

w1 � �1 − w2� � w3 � b4,

where a1, a2, a3, and a4 represent the arrival amplitudes at
each corner at t= ta and b1, b2, b3, and b4 represent the arrival
amplitudes at each corner at t= tb. The weights are

Point at (x, y, t)

Amplitude a1 at (x1, y1, ta)

Amplitude a2 at (x1, y2, ta)

Amplitude a4 at (x2, y1, ta)

Amplitude a3 at (x2, y2, ta)

∆x

y

∆t

Surface at time t = ta

Surface at time t = tb

Amplitude b2 at (x1, y2, tb) Amplitude b3

Amplitude b4Amplitude b1 at (x1, y2, tb)
w1 = �x − x1�/�x2 − x1� ,
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w2 = �y − y1�/�y2 − y1� ,

�9�
w3 = �t − ta�/�tb − ta� .

The time steps, ta and tb, where the ray traces are computed,
are typically at time intervals much greater than the acoustic
sampling time interval. Therefore, many of the time steps
rely on interpolated arrival information.

A. Test cases for source/receiver motion with a time-
varying sea surface

To check the developed algorithm, a comparison can be
made between results using the approach outlined in the pre-
vious sections with an exact solution. The exact solution re-
quires the water column to be isospeed and the sea surface to
be flat but can vary in height over time �i.e., a flat surface
that can move up and down�. This is a reasonable compari-
son since the approach outlined using a ray tracing algorithm
is the same whether the sound speed is depth dependent �or
not� and regardless of the shape of the surface.

The exact solution is developed based on the method of
images9 and the geometry is given in Fig. 9. The pressure
field is constructed using Eq. �4� with a set of amplitudes Amn

and corresponding delays �mn with n=1,2 ,3 ,4 and m=0
→�. The amplitudes and delays are as follows:

Amn =
1

Rmn
,

Rmn = �r2 + zmn
2 ,

�mn =
Rmn

c
,

zm1 = 2Dmzs + zr,

�10�
zm2 = 2D�m + 1� − zs − zr,

1, y2, tb)

1, y2, tb)

FIG. 8. Same as Fig. 4 except with the added dimen-
sion to allow for time changing surface.
at (x

at (x
zm3 = 2Dm + zs + zr,
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zm4 = 2D�m + 1� + zs − zr,

where zs is the source depth, zr is the receiver depth, r is the
receiver range, D is the water depth, and c is the water sound
speed �isospeed at 1500 m /s�. The one twist in this standard
formulation is that the surface is moving in time, which
causes the amplitudes and delays to vary in time. The varia-
tions in the surface are incorporated into the terms of Eq.
�10� through adding a time dependence to D, zs, and zr since
the effective water depth and the source and receiver depths
change with time. By making use of Eq. �4� with these time-
dependent amplitudes and delays, the exact received time
series can be determined.

To illustrate the comparison, consider an example with
D=100 m, zs=30 m, zr=40 m, and r=250 m. The receiver
is moving toward the source at 0.75 m /s. The sea surface is
moving away from the seabed at a speed of 0.25 m /s. In this
way, the Doppler shifts for surface interacting paths will be
reduced from 0.75 m /s. The waveform chosen for this ex-
ample is extremely Doppler sensitive such that the multipath
�each having distinct Doppler shifts� can be separated in both
delay time and Doppler space. The transmission waveform
used is the BPSK signal that was used in the Makai experi-
ment. The separation between grid points �as in the cube
shown in Fig. 8� are as follows: the depth spacing was 1 m,
the range spacing was 5 m, and the distance between sur-
faces was 0.0125 m; this implies a new surface every
12.5 ms �i.e., 40 ray traces were computed for surface per-
turbations between 0 and 0.5 m�.

The results are shown in Fig. 10. In panel �a� of the
figure is the exact impulse response shown in delay and Dop-
pler space �i.e., the “scattering function”�. In panel �b� of Fig.
10 is the arrival structure using the time-dependent ray inter-
polation algorithm previously described. In �a� and �b�, the
first path is the direct one and has a Doppler shift corre-
sponding to −0.75 m /s due to the horizontal receiver motion
�directly toward the source�. The next path is due to the
surface bounce and is less Doppler shifted due to the sea-

2D + zs

2D − zs

−zs

zs

zr

R03

R01

R02

R04

D

z

r

FIG. 9. Geometry showing the location and ranges of the source, receiver,
and corresponding images.
surface motion acting to Doppler shift in the opposite direc-
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tion. The next path is the bottom bounce and this path is
unaffected by the surface motion and is Doppler shifted less
than the direct path due to the more vertical directionality of
the ray path. The next arrivals are due to multiple bottom-
surface bounces.

V. MODELING STATIC, ROUGH SEA SURFACES

The previous section developed a method for modeling
time series with gently varying sea surfaces like that from
swell and the next sections provide an alternative formula-
tion which is more appropriate for finer scale roughness.
Rough surface scattering has been extensively studied and
there is a huge amount of literature on the subject �see, for
example, the text by Ogilvy�.12 To begin, exact solutions for
one-dimensional static rough surfaces are described by using
the Helmholtz integral equation. This will be compared to
solutions found with a ray trace solution �e.g., Bellhop� with
surface roughness. This will be further developed with the
use of the Kirchhoff approximation to yield a time-domain
version for scattering from rough, time-evolving surfaces.

A. Helmholtz integral equation

The description in this section will follow the notation
and derivation from Thorsos.13 Those results are presented
for completeness and to establish the notation being used.
The exact solution to the time-harmonic �e−i�t� one-
dimensional sea surface �free surface boundary� is given by
the Helmholtz integral equation,

p�r̄� = pinc�r̄� −
1

4i
�

S

H0
�1��k�r̄ − r̄���

�p�r̄��
�n�

ds�. �11�

That is, the total field is a sum of the incident and scattered
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FIG. 10. �Color online� In panel �a�, the exact impulse response �normal-
ized� is computed using the method of images and in �b�, it is computed
using the time-dependent ray interpolation method described. The first ar-
rival in time is from the direct path and shows only a Doppler shift due to
the receiver horizontal motion of −0.75 m /s. The next two paths that follow
are from the surface and bottom bounces. The additional multipaths are due
to multiple interactions with the sea surface and the bottom.
fields, p�r�= pinc�r�+ pscat�r�. In Eq. �11�, the acoustic wave
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S

number is given by k=� /c, the quantity �p�r̄�� /�n� is the
normal derivative of the pressure field on the surface, and
H0

�1� is the zero-order Hankel function of the first kind. On
the surface the pressure field is zero, such that

pinc�r̄� =
1

4i
�

S

H0
�1��k�r̄ − r̄���

�p�r̄��
�n�

ds�. �12�

The quantity of interest is the total pressure field p�r̄� which
requires first solving Eq. �12� for �p�r̄�� /�n�.

Equation �12� can be approximately solved by using nu-
merical integration,

am = �
n=1

N

Amnbn, m = 1, . . . ,N , �13�

where am is the incident field, and Amn are the Hankel func-
tions,

am = pinc�r̄m� ,

�14�

Amn = 	H0
�1��k�r̄m − r̄n�� if m � n

H0
�1���k�x/2e�	m� if m = n ,



and

bn = ��x

4i
	n

�p�r̄��
�n�

� r̄n

. �15�

The surface height function is defined as f�x� with 	2�x��
=1+ �df�x�� /dx��2 and ds�=	�x��dx�. Using unit vectors x̂
and ẑ, the vector r̄ is defined as r̄m=xmx̂+ f�xm�ẑ and xm

= �m−1��x−L /2, with 	m=	�xm� and L being the total
length of the surface.

By using matrix notation, Eq. �13� can be written as

a = Ab , �16�

with solution for b determined through inversion of A,

b = A−1a . �17�

Once this equation is solved for b, the scattered field is ob-
tained by using

pscat�r̄� = �
n=1

N

H0
�1��k�r̄m − r̄n��bn. �18�

The practical limitations of numerically solving these
equations is the inversion of matrix A. In practice, the sam-
pling of the surface requires approximately five points per
wavelength. To keep from introducing artifacts, the compu-

� � � � � � � � �
�� � � � � � �

Source

b1 b2

urface
tational domain has to be even larger than the region of in-
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terest �here, it was extended by 250 m�. If the objective is to
solve a problem with a 1 km surface at 10 kHz �for example,
for an acoustic communication simulation�, the number of
discrete points is over 30 000, which requires inversion of a
30 000�30 000 matrix for each frequency. This increases to
300 000�300 000 for a 10 km simulation. Add to this the
requirement that this be done over a broad band of frequen-
cies for many practical problems, and it becomes even more
difficult. To make matters worse, if the objective is to deter-
mine the time-evolving nature of the scattering, this must be
done at many time steps. The size of the problem by using
exact solutions becomes apparent and leads to the approxi-
mations used in the next sections. The exact approach out-
lined here is valuable, however, to provide ground-truth
comparison with the approximate methods.

B. Ray approach with the Kirchhoff approximation

The Kirchhoff approximation is as follows:

�p�r̄�
�n

� 2
�pinc�r̄�

�n
. �19�

The value of this approximation is that the elements of bn

required for the scattered field are no longer dependent on
the total field but only on the incident field. This removes the
need to store and invert the matrix A. Another way to think
about the solution for the scattered field is that the surface is
removed and replaced by point sources at each discrete lo-
cation xn. The weight of each point source is determined by
the coefficients bn. This is basically a statement of the Huy-
gens principle14 and is depicted in Fig. 11. For the exact
solution, each point source amplitude bn depends on each of
the others, while for the Kirchhoff approximation, it is only a
local reflection. However, the Huygens sources can reradiate
in all directions and the dense sampling allows for a more
complicated scattered field than that from a specularly re-
flected ray trace.

The incident field can be written in terms of a ray am-
plitude and delay �far field approximation for the Hankel
Function� from the source to each of the Huygens secondary
sources,

pinc�r̄n� �
1

�kR1n

ei��1n, �20�

where R1n and �1n are computed similarly to Eq. �10� for the
01 path for the surface bounce �suppressing the first index
which is unnecessary here since there are no higher order

�

eiver

bN

−1

FIG. 11. Diagram illustrating the surface is replaced by
a set of Huygens sources.
�

Rec

bN
images�. Since the Huygens reconstruction removes the sur-
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face boundary and replaces it with secondary sources, the
only other path to arrive in the incident field is from the
bottom bounce path 02. The total incident field at each Huy-
gens secondary source has two terms,

pinc�r̄n� =
ei��1n

�kR1n

+
Vnei��2n

�kR2n

, �21�

where the second term has been modified to include the bot-
tom loss Vn that occurs for a nonpressure release bottom.
This term will generally be a function of the angle incident
on the bottom and is therefore indexed to each point on the
surface. Further, this assumes a plane wave reflection loss
which is a slight approximation. The expression for the inci-
dent field has been written out for this isospeed case for
clarity; however, these two terms can be easily taken from a
ray trace algorithm that would include refraction for more
realistic cases. The weights for the Huygens secondary
sources are computed using Eq. �15� and taking the deriva-
tive of pinc�r̄n�,

bn � kÑn ei��1n

�kR1n

+
Vnei��2n

�kR2n
� , �22�

where

Ñn =
e−i�/4�x	n

�2�
�ŝr,n cos �n + ŝz,n sin �n� , �23�

with ŝr,n ŝz,n the unit vector components for the normal to the

surface at rn and � the direction of propagation of pinc. The Ñ
and k in Eq. �22� appear due to the derivative in the direction
normal to the surface. The value of bn is an approximation to
the derivative since the higher order terms of the derivative
are neglected �i.e., the terms with R−3/2�.

For the general cases considered here, there is a seabed
boundary so the free-space Hankel function is replaced in
Eq. �11� with the Green’s function G�k�r̄− r̄��� representing
the point source response between r̄ and r̄�.

p�r̄� = pinc�r̄� −
1

4i
�

S

G�k�r̄ − r̄���
�p�r̄��

�n�
ds�. �24�

For the numerical implementation, the Green’s function has a
similar form as the incident field,

G��r̄ − r̄n�� =
ei�r̄1n

�kR̃1n

+
Vnei��̄2n

�kR̃2n

, �25�

where in this case, R̃1n represents the distance for the direct
path between the Huygens secondary source �at rn� and the

field point �at r̄� and R̃2n, represents the distance for the
bottom bounce path.

The scattered field is then constructed as

pscat�r̄� = �
n=1

N

G�k�r̄ − r̄n��bn, �26�

where the total scattered field is a sum of four components

for each Huygens source,
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pscat�r̄� = �
n=1

N

�
m=1

4

Ñn�Amei�Tm� , �27�

with the amplitudes

A1 =
1

R̃1nR1n

,

A2 =
Vn

R̃2nR1n

,

�28�

A3 =
Vn

R̃1nR2n

,

A4 =
Vn

2

R̃2nR2n

,

and the delays

T1 = �̃1n + �1n,

T2 = �̃2n + �1n,

�29�
T3 = �̃1n + �2n,

T4 = �̃2n + �2n.

The frequency dependent k term conveniently cancels out.
However, this is a line source formulation and this frequency
dependence will become necessary when extending to a
point source, which is required for typical applications. This
issue will be discussed further in Sec. VI. It is also worth
noting that this formulation includes one surface bounce
path. That is, the total field will consist of a direct path,
bottom-bounce, bottom-surface-bounce, surface-bottom-
bounce, and bottom-surface-bottom-bounce paths. For many
applications, these six paths will provide a sufficient impulse
response representation. However, paths with multiple sur-
face bounces could be included in an approximate way by
modifying the amplitude of the first surface bounce by taking
only the specular path and then include the scattering in the
second interaction with the surface.

C. Examples of scattering approaches for static
surfaces

Static surfaces at a single frequency are useful for
checking the approximate solutions since the exact
Helmholtz–Kirchhoff integral equation can be used as the
ground truth. The time-domain Kirchhoff approach will not
immediately show its utility for these time-harmonic ex-
amples. However, that formulation will be critical when ex-
tending to the time-varying surfaces in Sec. VII.

1. Surface scattering without a seabed

In the first example, the field interactions with the rough
sea surface is determined without a seabed. Using an isos-

peed water column allows the exact Hankel functions to be
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included in the Helmholtz–Kirchhoff integral equation. The
source depth was 40 m from the surface and the frequency
was 200 Hz.

To generate the random surface shape, a spectral method
was used similar to that by Thorsos.13 That is, white noise is
filtered with a Gaussian spectrum to provide a one-
dimensional random sequence with height and correlation
distance governed by the parameters of the Gaussian density,
its mean, and correlation. For the first example, the surface
height standard deviation is 0.5� and the correlation length is
50�.

The results are shown in the four panels in Fig. 12. The
field is displayed as TL �TL is referenced to 1 
Pa at 1 m�
with the line near depth 0 being the shape of the sea surface.
Panel �a� is the exact solution using the Helmholtz–Kirchhoff
integral equation. In �b�, the solution shown is for the time-
domain Kirchhoff approximation. In �c� is the output from
the Bellhop ray/beam trace using Gaussian beams and �d� is
the same using geometric rays. The results show nearly per-
fect agreement between �a�, �b�, and �c� while the geometric
rays in �d� show indications of typical ray artifacts. These
types of artifacts are the motivation for improved methods
such as Gaussian beams.

In Fig. 13, the correlation length is reduced to 20�. In
this case, the geometric rays in panel �d� are clearly showing
artifacts while the Kirchhoff method �b� is still in reasonable
agreement with the exact solution in �a� and to some degree
also the Gaussian beam solution in �c�. Although these are
just samples, the results for other cases were similar. That is,
as the roughness increased �either by reducing the correlation
length or the height� the geometric beams appeared to pro-
duce erroneous results first, followed by the Gaussian beams,

FIG. 12. �Color online� TL �referenced to 1 
Pa at 1 m� for different nu-
merical methods with a rough surface and no seabed. The source depth was
40 m from the surface and the frequency was 200 Hz, the surface height
standard deviation is 0.5� and the correlation length is 50�. Panel �a� is the
exact solution using the Helmholtz-Kirchhoff integral equation, in �b� the
solution shown is for the time-domain Kirchhoff approximation and in �c� is
the output from the Bellhop ray/beam trace using Gaussian beams and �d�
for geometric rays.
and then the Kirchhoff approach.
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2. Surface scattering with a seabed

As a second example, the seabed was included in the
calculation. As before, the surface had 20� correlation
length, surface height standard deviation of 0.5�, and the
source was at 40 m depth. The water column was 100 m
with a homogeneous �in depth� seabed with a sound speed of
1600 m /s, density of 1.5 g /cm3, and attenuation factor of
0.75 dB /�. Since the Kirchhoff approximation method in-
cludes only a single surface bounce path, the figure that it is
compared against was computed with the same paths. In Fig.
14, results from a single realization are shown comparing the
Helmholtz–Kirchhoff integral equation result with the Kirch-
hoff approximation.

The results shown are for just single realizations of the
random rough surface; however, these were typical and
showing results for many realizations is not possible here.
Results for many more realizations are summarized by the
plots in Fig. 15. In this figure, there are three panels showing
TL at 200, 400, and 600 Hz for the same conditions as the
previous case �i.e., source depth of 40 m and 100 m water
column�. In each panel, 50 realizations of rough surfaces are
averaged. This is similar to the comparisons made by
Thorsos13 but those were for a scattering cross section and
here the results are for a receiver at a fixed depth of 25 m.

FIG. 13. �Color online� Same as Fig. 12 except with surface roughness
correlation is 20�.

FIG. 14. �Color online� Same as Fig. 13 except with the inclusion of a
smooth seabed at 100 m depth. Panel �a� is the exact solution using the
Helmholtz–Kirchhoff integral equation. In �b�, the solution shown is for the

time-domain Kirchhoff approximation.
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The heavier gray line indicates the Helmholtz–Kirchhoff in-
tegral equation results and the thin black line is for the
Kirchhoff approximation. In general, not only the average
levels are in good agreement, but also the details of the finer
structure.

VI. APPROXIMATING POINT SOURCE SOLUTIONS
FROM LINE SOURCES

The previous solutions using the Helmholtz–Kirchhoff
integral equation as well the Kirchhoff approximation as-
sumed line sources for the excitation field. This is convenient
for the derivations but is not particularly good for simulating
the types of sound sources used in underwater acoustic sys-
tems. These are much more accurately modeled using point
sources. The line source solutions can be converted to point
source solutions in a fairly simple way.

Consider the field from a line source in free space,

pL�R� =
i

4
H0

�1��kR� �� i

8�kR
eikR, �30�

where, as before, k is the acoustic wave number and R= �r̄
− r̄�� is the distance between the source and receiver. The
point source field is

pP�R� =
eikR

4�R
. �31�

The line source field is converted to an equivalent point
source field by multiplying by the factor �k / i2�R,

pP�R� =� k

i2�R
pL�R� . �32�

An additional complication arises since the line source solu-
tion is determined in an x-z plane geometry coordinate sys-
tem. Therefore, the true range R from the source to receiver
is related to the plane geometry distance x according to x
=R cos �, where � is the angle from the horizontal line be-
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tween the source and the receiver. The conversion from a
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plane-geometry line source solution to an equivalent axisym-
metric, cylindrical geometry, point source solution is then

pP�r,z� =�k cos �

i2��x�
pL�x,z� , �33�

where, for the cylindrical coordinate system, r= �x�. The
�cos � term is generally small except at short ranges where
there can be strong arrivals propagating at steep angles. The
main amplitude contribution to the conversion factor is from
the �x term in the denominator. It will be seen in the next
section that the �k term is also important in forming the
time-domain solution.

As an example of the correction from a line source so-
lution to a point source solution, the exact field was com-
puted for a point source using two reflecting boundaries
separated by 100 m and the point source at 40 m depth. This
was computed using the method of images. This result is
compared to the described Kirchhoff approximation for a
line source with the conversion factor applied. Since the
boundaries are flat, the Kirchhoff approximation is exact for
the line source. Note that the �cos � term is applied to just
the incident field in Eq. �21� according to the source launch
angle. The full solution includes an infinite number of reflec-
tions. However, as previously mentioned, the Kirchhoff for-
mulation only includes paths with a single surface reflection
so the image solution is computed and limited to the same
number of paths. In Fig. 16, the exact solution and the line
source converted solution are shown for three receiver
depths. The lines are nearly on top of each other so the exact
solution is shown as a slightly thicker light gray line and the
converted line source result is in black.

The conversion of line source results to an equivalent
point source result comes about in various propagation solu-
tions. For example, the Gaussian beam formulation also has
this same factor which is derived more formally by Porter

11

700

FIG. 15. Averaged TL for 50 realizations at frequencies
of 200 Hz in �a�, 400 Hz in �b�, and 600 Hz in �c�. The
heavy gray line is the Helmholtz–Kirchhoff result and
the thin black line is the Kirchhoff approximation.
z

z

z

and Bucker. Another version of this conversion can be il-
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lustrated for waveguide propagation using normal modes.
The pressure field for a line source is derived by Jensen
et al.9 as

pL�x,z� = �
m=1

�
i

2��zs�
m�zs�m�z�

eikm�x�

km
, �34�

where the depth dependent mode functions are , the source
depth is zs, the receiver depth is z, the density is �, and the
horizontal wave number that corresponds to the mode is km.
The corresponding modal sum for the axial symmetric point
source in cylindrical coordinates �r ,z� is

pP�r,z� = �
m=1

�
1

��zs�
� i

8�r
m�zs�m�z�

eikmr

�km

, �35�

where �x�=r. To obtain the point source solution from the
line source solution requires multiplying pL�x ,z� by
�km / i2��x�, that is,

pP�r,z� =� km

i2��x�
pL�x,z� . �36�

Representing the horizontal wave numbers in terms of the
corresponding angle, km=k cos �, results in the conversion
factor �k cos � / i2��x�, which is exactly the same as shown
previously for free space. The weighting of the rays by
�cos � according to their launch angle would be equivalent
to weighting the mode function source excitation by this fac-
tor, that is, m�zs��cos �. As mentioned, the greatest influ-
ence is due to the ��x� term in the denominator and, for the
time-domain solution, the �k factor.

VII. TIME-DOMAIN KIRCHHOFF APPROXIMATION
FOR TIME-VARYING SURFACES

The approach outlined in Sec. V with the Kirchhoff ap-
proximation can be applied to time-varying sea surfaces. The
surface shape varies at each time step and the Kirchhoff so-
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lution is recomputed. This is possible since the Kirchhoff
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approximation is numerically efficient and does not require
the matrix inversion needed for the integral equation. There
is one subtle point to obtain a time series that resembles
measurements. In Sec. VI, it was pointed out that to obtain
the field from a point source, the line source solution re-
quired multiplying by �k cos � / i2��x�. The �1 / �x� term is
easy enough to include at each receiver position after the
simulation. The �cos � factor is applied to each of the rays
launched from the source according to their angle. The �k
factor depends on each frequency component but is also
simple to include through the source function. The Fourier
transform of the transmit waveform, S���, is multiplied by
the �k factor and inverse Fourier transformed back to the
time domain as the new transmit waveform used in the con-
volution sum.

Three examples will be given using this approach. In the
first case a flat sea surface moves uniformly. The second
example uses a rough, moving sea surface at a single point at
a relatively high frequency. The third case is a lower fre-
quency example showing a pulse propagating and reflecting
off the rough surface.

A. Modeling a flat, time-varying surface

This example for a flat but moving surface is similar to
that shown previously in Sec. III and is a convenient check
since the image method can be used for comparison. Here,
the source is at 30 m depth and the receiver is at 250 m
range from the source at 40 m depth. The sea surface is
moving at 0.25 m /s. The same Doppler-sensitive BPSK sig-
nal �centered at 9500 Hz� as used previously �in Secs. II and
III� was the source transmission and the received time series
was matched filtered with Doppler adjustments as before.
The results for the Kirchhoff time-domain model and the
image method are shown in Fig. 17. Note, that this approach
does not currently treat receiver motion so the receiver is at a

700

FIG. 16. TL at 200 Hz for an exact �light gray line�
point source and a conversion factor applied to the line
source solution �black line�. The three panels are for
different receiver depths, 10 m in �a�, 20 m in �b�, and
30 m in �c� for a source at 40 m.
m

m

m

fixed location.
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B. Modeling a rough, time-varying surface

In this example, the sea surface is generated using the
Gaussian filtered white noise method and the entire surface is
moving at 0.25 m /s. The standard deviation of the surface is
1.6 m and the correlation length is 8 m. The surface shape is
shown in panel �a� of Fig. 18 and the received time series
after applying the Doppler adjusted matched filter to ap-
proximate the scattering function in panel �b�.

C. Pulse propagation with a rough surface

A pulse was transmitted from a source at 40 m depth
using the band from 50 to 600 Hz. The time evolution of this
pulse is shown in Fig. 19. This example helps illustrate that

FIG. 17. �Color online� In panel �a�, the impulse response �or scattering
functions� is computed using the method of images and in �b�, it is com-
puted using the time-dependent Kirchhoff approximation method described.
The first arrival in time is from the direct path and the third arrival from the
bottom bounce both show no Doppler shift. The other paths that follow are
from the surface and surface/bottom bounces and are Doppler shifted.
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the model produces the correct pulse shape as well as the
reflections from the rough boundary.

VIII. CONCLUSION

Correct scattering and Doppler modeling is important
for a variety of underwater acoustic systems such as acoustic
modems for communications. The type of communication
modulation schemes and data rates depend on the channel
spread factor, which is determined by the multipath duration
and the Doppler spread. Estimating these quantities is useful
for both system design and performance prediction. A binary
phase-shift keying communication signal was shown from
the Makai experiment, which is typical for that type of ocean
environment. The first few arrivals are generally the stron-
gest with the surface interacting paths having Doppler shifts
that depend on the surface motion.
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FIG. 18. �Color online� In panel �a�, the rough surface is shown for the
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Two simulation methods have been developed for acous-
tic propagation in the ocean with a time-evolving, rough sea
surface. The first method is relatively easy to implement and
conveniently allows for receiver motion as well as a chang-
ing sea surface. A second method uses the Kirchhoff approxi-
mation and was shown to compare well against the exact
solutions. There are a number of approximations within this
approach including the limitation to six arrivals. However,
the approach produces results that are useful for determining
how each path is modified by interaction with the rough,
time-evolving sea surface.
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