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It is shown that the standard stair-step representation of a sloping bottom may result in
significant prediction errors. In fact, current parabolic equation implementations are not
energy conserving. The problem is shown to derive from the approximate treatment of the
interface conditions at vertical boundaries along the stair steps. Several improved interface

conditions are proposed.
PACS numbers: 43.30.Bp

INTRODUCTION

Since the early 1970’s, when the first parabolic equation
(PE) solution based on Fourier transforms appeared in the
underwater acoustics community,' the PE technique has
been applied extensively to model propagation in range-de-
pendent ocean environments with strong bathymetric
changes. In fact, the rationale behind the continual search
for wider angle PE forms was to obtain an accurate treat-
ment of bottom-interacting propagation, which often in-
volves steep propagation angles. (Critical reflection angles
of 20°-30° are typical for sandy seafloors.) Wide-angle PE’s
were subsequently used with confidence to model propaga-
tion in sloping bottom situations, both on continental
shelves and over seamounts. There is, however, a fundamen-
tal problem of energy conservation in current PE implemen-
tations of sloping interfaces, a problem that was recognized
just recently and which may result in prediction errors of
several decibels for moderate bottom slopes.

Our discussion will focus on the cause and resolution of
this problem in models that treat sloping bottoms by a stair-
case approximation. This type of approach is used in both
parabolic equation and coupled-mode models, however, we
should mention that there are some subtleties in using our
results for finite-difference implementations of PE’s. Energy
conservation is intimately linked with the difference scheme
used and should be verified for the discretized equations as
well. We have performed a naive implementation of our in-
terface conditions in a popular PE model (IFD)? and ob-
tained improvements similar to those we shall present for the
coupled-mode formulation, however, some problems of
noise in the solution have simultaneously cropped up.
Westwood and Collins* have performed more complete tests
using a variable-angle PE and obtained satisfactory results.

Energy conservation for coupled-mode models that use
a smooth bottom is discussed by Rutherford and Hawker.*
An energy-conserving PE has also been formulated by
Kriegsmann.® The “‘energy” conserved in the latter formula-
tion does not precisely correspond to the energy that is con-
served by the original Helmholtz equation, however, the
model should provide an improvement. Lee and McDaniel®
have constructed a modified bottom interface condition but
it is unclear to what extent their formulation is energy con-
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serving. Abrahamsson and Kreiss’ specifically analyse ener-
gy conservation in the special case of a rigid bottom. Finally,
it is possible to circumvent the staircase problem by simply
picking a coordinate system parallel to the water/sediment
interface as shown by Collins.? However, in the general case
where there may be more than one sloping interface a simple
grid rotation does not suffice.

We shall begin in Sec. I by reviewing the results of the
ASA benchmark problem that motivated this work. In Sec.
11, we study a simple one-dimensional wave equation to illos-
trate how these errors are induced by inaccurate treatment
of the vertical interfaces. That analysis allows us to suggest
improved interface conditions suitable for both PE and cou-
pled-mode implementation. We have implemented the new
interface conditions in a one-way coupled-mode formulation
and in Secs. IIT and IV we demonstrate that they resolve the
problem of energy conservation and as a result satisfy reci-
procity to a high degree of accuracy. Finally, in Sec. V we
end with a summary and conclusions.

I. ASA BENCHMARK RESULTS

Examples of inaccurate PE results for upslope propaga-
tion in wedge-shaped oceans first appeared among the range-
dependent benchmark solutions solicited by the Acoustical
Society of America in 1987.% A schematic of the environ-
mental scenario is given in Fig. 1. The initial water depth is
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FIG. 1. Schematic of the wedge problem.
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FIG. 2. Coupled-mode results for the 2.86" wedge [two way (—) and one
way (---1].

200 m decreasing linearly to 0 m at a range of 4 km giving a
wedge angle of about 2.86°. The source frequency (F) is 25
Hz, while the source depth (SD) and recetver depth (RD)
are, respectively, 100 and 30 m. The water sound speed is
1500 m/s, and the bottom speed is 1700 m/s. The density
ratio between bottom and water is 1.5 and the bottom attenu-
ation is 0.5 dB/A.

The reference solution given by the solid line in Fig. 2
was obtained from a full-spectrum fwo-way coupled-mode
solution.? On the same graph is displayed the one-way cou-
pled-mode result that, as range increases, deviates increas-
ingly from the reference solution. (At each interface, the
one-way coupled-mode calculation matches pressurebut not
velocity. This approach is described in more detail in Sec.
I1.) In Fig. 3, we superimpose the one-way coupled-mode
result with a solution obtained using a standard finite-differ-
ence parabolic equation model (IFD).? The PE solution,
like most of the other PE results presented in the ASA
benchmark session, agrees quite nicely with the erroneous
one-way coupled-mode result.

This difference was initially thought to be due to the
neglect of backscattering in the one-way solutions, but it was
subsequently realized that the backscattered field in this case

_ is negligible.' In fact, we find that the strength of the back-
scattered field component, extracted from the two-way cou-
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FIG. 3. One-way coupled mode (—) and PE results (- - -) for the 2.86°
wedge.
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FIG. 4. Stair-step representation of sloping interface.

pled-mode result, is 40-50 dB lower than the outgoing field
component.

Since the solution is essentially outgoing, then why are
the one-way results in error? This can be easily understood
by looking at the consequences of the use of a stair-step ap-
proximation to a sloping bottom. Figure 4 displays a few
vertical segments separating media of different properties.
The important interfaces with strong impedance contrasts
are the horizontal interfaces I, and the vertical interfaces I,
along the stair steps.

While conditions at horizontal interfaces (continuity of
pressure and vertical particle velocity ) are accurately imple-
mented, the vertical interfaces I, are treated very loosely. In
fact, an a priori assumption of the solution being outgoing
only permits just one vertical interface condition to be satis-
fied. When solving for pressure in a finite-difference PE im-
plementation, the condition being satisfied is normally con-
tinuity of pressure across vertical interfaces. Since split-step
Fourier implementations generally solve for a density-re-
duced pressure p/\/p, these codes provide continuity of re-
duced pressure across vertical interfaces. It is clear, how-
ever, that the full-interface condition cannot in general be
satisfied within the framework of a one-way solution.

II. TEST OF INTERFACE CONDITIONS: ONE-
DIMENSIONAL WAVE EQUATION

We next address the question of which type of approxi-
mate interface condition should be used in one-way solutions
in order to improve accuracy. Some guidance can be gained
by examining a 1-D wave equation. Thus we consider a prob-
lem with ¢(x) being the sound speed and p(x) being the
density as a function of axial distance x. The governing equa-
tion is then

pl(/p)p, |« + [£7/(X)1p =0, (1)

where p(x) is the acoustic pressure and c is the frequency of
the time-harmonic source.

We observe that for slowly varying p(x), the WKB"'
approximation to p(x) is given by

P(x) “‘Anm-x)/ﬁ'n] [kl/k(x)]}e’LH‘M‘, (2)
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FIG. 5. Discretization of the 1-D wave equation.

where k(x) = w/c(x). (The general form of the WKB rep-
resentation involves terms corresponding to right and left
traveling waves. We assume no reflected wave is generated
so that the above form represents the complete solution.)
Furthermore, it is easy to verify that the WKB result is ener-
gy conserving in the sense that Im(p*p, /p) is constant as a
function of x.

We now consider the results obtained hy a piecewise
constant discretization. Thus, as illustrated schematically in
Fig. 5, the medium is approximated by a sequence of N seg-
ments with both sound speed and density constant within a
segment. The solution in the jth segment can then be written
as the sum of a right- and left-traveling wave as follows:

- B‘,e_ ik, (x le, 3

where x; and x; , , are the endpoints of the jth segment and
k, is the wave number in that segment. We next consider the
effect of four possible interface conditions.

iki(x — x)

pi(x)=4d,e

A. Pressure matching

In this case, we assume that B, = 0 for each segment so
that there is no backscattered field. Matching pressure at
X =X, , we obtain

Ajpr = AP, 4
which implies,
N
Ay =4, [[ € (5
i=0
_ A(ﬂrﬁ}‘_h'kjﬂx’. (6)

Now taking the limit as the number of segments goes to
inifinty yields:

ik (s

p(x) = Aye )

Notice that the phase term is identical to the WKB re-
sult of Eq. (2), however, the amplitude factor is wrong. The
pressure-matched solution shows a constant amplitude,
while the WKB amplitude varies in proportion

Vo(x)/k(x).

B. Velocity matching

Again, we assume that B; = 0 for each segment so that
there is no backscattered field. Matching p, /p at each inter-
face we obtain
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A =4[y Sp) Ryl )], (®
which implies
N—1
L K kA,
Ay =A [ 8L L H*An (9

:‘I:'[‘J P K
= Ao[ (on/po) (Ro/hey) €= 14%, (10)

Now taking the limit as the number of segments goes to
infinity yields

p(x) = A{[p(x)/po) [ko/ K x) [} HO, an
Once again, the phase factor is correct and the amplitude
incorrect. The WKB amplitude term is the geometric mean
of the pressure-matched and velocity-matched solutions.
C. Reduced-pressure matching

Matching p/\p at each interface leads to

A=A (o /o)™, (12)
which implies,
N-1
Ay =4, H Vi1 /) P (13)
j=o
= AT /po)e.:f a'kAx, (14)

Again, taking the limit as the number of segments goes to
infinity yields

Px) = A (p(x)/pg) "%, (15)
Thus by matching reduced pressure we correct for the errors
due todensity variation but not for those due to the change in

sound speed.

D. Impedance matching

Itis evident that some additional correction is needed to
account for the effect of variations in k(x). We have experi-
mented with various possibilities, however, we shall consider
one in particular suggested by Westwood and Collins® and
recently implemented in a PE code. In this approach, one
simply matches p/\pc across interfaces. (We refer to this as
impedance matching although it actually involves the square
root of the material impedance.) This implies

Ay =AJ\[[(pf+1/pi)(kf/kj+1)]eikAxl' (16)
Following the now familiar sequence of steps one arrives at

P = AnTTp(x) /pol TRe/R G T}, (1)
which agrees precisely with the energy conserving WKB re-
sult.

For one-dimensional problems, this corrects for sound-
speed changes as well as density changes across interfaces.
However, for two-dimensions some complications arise. The
difficulties are somewhat clearer if we consider an alternate
derivation. Consider an energy flux defined by

*
E(x) =J1m(” P‘) dz.
yel

The problem is to produce a matching condition that con-

(18)
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serves this quantity. If we make the following plane-wave
approximation,

pozikep, (19)
with k, range independent, we obtain

2
E(x)=k, —I—P-I-dz. (20)
P

In this plane-wave approximation p//p matching is a suffi-
cient condition for energy conservation.

In general, we might expect to do better by correcting
for variations in the average wave number with range. This
leads to an improved approximation,

Pe=iko(x,2)p, 2n
with
ky(x,z) = &/c(x,2). (22)
We then obtain,
2
E(x):ff&‘ﬂ'*‘l'—dz. (23)
p

From this equation we can see that, in this improved plane-
wave approximation, a sufficient condition for conserving

E(x) is that p/\Jpe is continuous. However, in general the
pressure field involves a spread of plane-wave angles so that
even the improved plane-wave approximation is in error.
For this reason, matching p/yjpc does not entirely resolve the
energy conservation problem in two dimenston. However, in
one dimension, there is a unique X, (x) that characterizes the
wave so that the approximation becomes an equality and
energy is conserved.

E. Single scatter

The single-scaiter result is obtained by treating each
pair of segments as an independent problem, thus neglecting
the higher-order terms resulting from multiple scattering
(reflection and transmission) at other interfaces. For prob-
lems involving simply sound-speed variation (not density
variation) Bremmer'? has shown that the single-scatter so-
lution converges to the WK B result in the limit of an infinite-
ly fine segmentation. However, the impedance contrast in
our problem is dominated by the density change at interfaces
and so we must reconsider the question of whether an energy
conserving WKB solution is recovered.

In the left segment, we allow both an incident right-
traveling wave with coefficient A; and a reflected left-travel-
ing wave with coefficinet B;. In the right segment, we allow
only an outgoing transmitted wave with coefficient 4;, ,.

eij‘.f‘,k(s)ds
px) ko 1K matched
po_k(x) p./p matched
LX) griwod ) [y matched

! p/\Jpc matched/single scatter/WKB
px) ko ks
Po k(x)
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The two unknowns permit us to impose both continuity of
pressure and particle velocity:

Ay, =A@ T4 B 0N, (24)
iy = /pI kK 0 )
X (A, — Be™ "), (25)

Solving for A4, , |, we obtain

A1 = A4, [V + (p/py0 O Uy 1 76D 1)

(26)
which implies,
N-=1 kAx,
Ay =4, ] 2 @n
=0 VL (p,/p; 0 YK 1 /KD
N1 2 sy Sk
=4 — et (28)
: ,-l;lu T

where f, = k,/p,.
Let us focus our attention on the term @ defined by,

fim T} —2—— 29
Q_Nﬂ"l,l;[.,u,g.“/g' =

Following Bremmer, we rewrite this as
Q=1 5! 1 Z ’ (30
im cxp( n—-———-—) )
N—a ,Z:o 1 + f;+ ] / f_;

N-1 Af,
lim exp| — ln(] +—')] (31
N— o p[ ,—;0 2_[;—
where, Af; = f;, | — f;- Now, taking the limit and using the
small x approximation In(1 + x) =x we obtain:

Q=exp(—£jg—§)=exp(——%~]n;§;3) ) (32)

Sxo)
= —_ (33)
\/ Six)

Substituting this result back in Eq. (28) yields

p(x) =4 £X) ko ei]‘"fk(s]ds, -
Po Kk(x)

which is precisely the WKB result. The WKB result is of
course only an approximation itself to the exact solution.
Further improvements could be obtained by including addi-
tional terms in the multiple-scatiering series as discussed by
Bremmer.

F. Summary of results

i

The results of these various interface conditions are
summarized as follows:
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Comparing these forms we see that the pressure-
matched solution shows serious deficiencies for moderate
density variation. Velocity matching is also a poor choice,
however, reduced-pressure matching corrects entirely for
the density effect. If c(x) varies much less than p(x) the
reduced-pressure matching would correct most of the error.
A further improvement may be obtained using the single-
scatter approximation.

The above discussion assumes a problem involving con-
tinuous variation of the material properties. For problems
where discontinuities are present then both pressure match-
ing and reduced-pressure matching may well provide inac-
curate solutions. Consider for instance a simple interface be-
tween media with the same sound speed but with a density
contrast. In the exact solution, an incident wave would parti-
tion its energy between a backscattered and forward travel-
ing component. The reduced-pressure matching condition
provides perfect energy conservation and therefore errone-
ously carries all the incident energy into the forward travel-
ing component. In this case, only the single-scatter solution
would provide the correct partitioning of energy. The single-
scatter approximation in turn breaks down when significant
energy results from multiple scattering involving additional
interfaces.

The above interface conditions are all amenable to im-
plementation in 2-D or 3-D wave equations involving either
coupled mode or parabolic equation types of models. In the
next section, we show the results of implementing these dif-
ferent interface conditions in a full-spectrum coupled-mode
model.” The actual implementation details are fairly
straightforward and are relegated to the appendix.

Ill. COUPLED-MODE RESULTS
A. Upslope propagation

Since the problem of energy conservation in PE’s tends
to be accentuated by increasing the bottom slope, we have
here selected a somewhat extreme situation where the
wedge-shaped ocean has a slope angle of 12.7°. As indicated
schematically in Fig. 6, the initial water depth is 1000 m
decreasing linearly to 100 m at a range of 4 km. The source,
which is treated as a line source in plane geometry, is located
at a depth of 50 m and has a frequency of 25 Hz. The water
sound speed is 1500 m/s while the bottom speed is 1700 m/s.

am g

100 m

FIG. 6. Schematic of the modificd wedge problem (upslope).
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FIG. 7. Transmission loss for the maodified wedge prablem {upslope).

The density ratio between bottom and water is 2.0 and the
bottom attenuation is 0.5 dB/A.

In Fig. 7, we display our reference solution obtained
from a full two-way calculation and in Fig. 8 we have ex-
tracted a horizontal slice taken at a receiver depth of 50 m.
As in the original benchmark problem,* the pressure-
matched solution is in error. With the increased slope and
density contrast the solution now shows an even larger error
of about 7 dB at 4 km.

The plot of the backscattered field in Fig. 9 shows that
the backscatter is now significantly stronger than in the 2.86°
wedge. Nevertheless, throughout most of the range, the
backscaltered field is negligible relative to the outgoing com-
ponent.

In Fig. 10, we compare the full two way, the outgoing
component, and the single-scatter solutions over the region
from 3—4 km. The full two way and the outgoing component
agree to within roughly 1 dB. This represents the difference
due to the effect of backscattering. However, the key point of
interest is that the improved one-way formulation based on
the single-scatter approximation eliminates almost entirely
the 7-dB error we have seen in the conventional pressure-
matched solution. This approach is the most accurate in the
hierarchy of one-way algorithms we have considered.

The single-scatter approach provides a nearly complete

Loss (dB)

FIG. 8. Coupled-maode results for the 12.7° wedge [two way (—) and pres-
sure matched (---)].
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FIG. 9. Backscattered component of the two-way coupled-mode results for
the 12.7° wedge.
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FIG. 10. Coupled-mode results for the 12.7° wedge [two way (—), outgo-
ing component (- - -), and single scatter (--)].
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FIG. 11. Coupled-mode results for the 12.7° wedge [two way (—),
p/(pc)'"? matched (- - -), p/p'’* matched (- --), and p matched (----)].
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FIG. 12. Coupled-mode results for the 12.7° wedge [two way (—), outgo-
ing component (- - -), and single-scatter (---)].
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FIG. 13. Coupled-mode results for the 12.7° wedge [two way (—),
p/(pc)'’* matched (- - -), p/p'/? matched (---), and p matched (----)].

resolution of the problem of energy conservation. It is how-
ever somewhat more cumbersome than the other matching
conditions. As shown in Fig. 11, reduced-pressure matching
also provides a significant reduction in error compared to
the simple pressure-matched solution.

As discussed in the previous section, matching p/\pc
across interfaces resolves the energy conservation problem
in one dimension but not necessarily in two dimension. How-
ever, we see in Fig. 11 this condition does provide a further
improvement over reduced-pressure matching.

In Figs. 12 and 13, we consider the effects of these var-
ious interface conditions on transmission loss versus depth
taken at a range of 4 km. At this particular range, the back-
scattered component is negligible so that the outgoing com-
ponent and the full two-way solution (Fig. 12) agree almost
perfectly. Again, we see that the single-scatter result pro-
vides nearly perfect agreement with the exact solution. Simi-

larly, the improvements obtained by matching p/\p (re-

duced pressure) or p/\pc are seen in Fig. 13 to be fairly
consistent over depth.

B. Downslope propagation

We now consider the case of downslope propagation as
indicated schematically in Fig. 14. The initial water depth is
now 100 m increasing linearly to 1000 m at a range of 4 km.
The remaining properties are unchanged.

0 km 4km

100m ¢=1500 m/s

p=1gicm 3

P A

1000 m

FIG. 14. Schematic of the modified wedge problem (downslope).
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FIG. 15. Transmission loss for the modified wedge problem (downslope).

In Fig. 15, we display our reference solution obtained
from a full two-way calculation. In the downslope direction,
there is less backscaltter so that the two-way solution and the
outgoing component of the two-way solution shown in Fig.
16 are almost identical along the entire receiver track. The
single-scatter result once again provides a nearly exact treat-
ment of the problem in a one-way context.

As shown in Fig. 17, the conventional pressure match-
ing again produces an error of about 7 dB at a range of 4 km.
However, this time the pressure-matched solution predicts
too high an energy level. Matching reduced-pressure again
eliminates most of the error while p/\pc matching provides
an improvement at some ranges and a degradation at other
ranges.

Figures 18 and 19 show analogous results taken along a
depth slice at a range of 4 km. Throughout the upper 1000 m
the full two way, the outgoing component of the two-way
solution and the single-scatter solution agree to within the
accuracy of the calculations (Fig. 18). Reduced-pressure
matching provides an alternative approach to eliminating
the error as shown in Fig. 19. However, at this range p/\/pc
matching produces an over correction.

To summarize the results of the upslope and downslope

F = 250 Hz
SD= 500 m
RD« 500 m
20+
|
il
30
T It
] |
3 w0
m!
8g 7
[ 1 3 4

FIG. 16. Coupled-mode results for the 12.7° wedge [two way (—), outgo-
ing component (- - -), and single scatter (<~} ]
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FIG. 17. Coupled-mode results for the 12.7° wedge [two way (—),
p/(pe)"? matched (- - -), p/p'’* matched (---), and p matched (-.-)].

calculations, the reduced-pressure matching as implemen-
ted in most split-step PE’s, produces a consistent improve-
ment. As we have seen in the 1-D analysis reduced-pressure
matching corrects only for the density effect and not the
wave-number change. Nevertheless, considering that this
test problem represents an extreme casc, we may conclude
that the p/\/p matching is adequate for most practical prob-
lems in underwater acoustics. However, the pressure match-
ing currently implemented in finite-difference PE's is defini-
tely not adequate.

The most accurate solution is based on the single-scatter
formulation. This type of matching condition also lends it-
self to a simple marching solution and like the other approxi-
mations considered here is adaptable to other one-way mod-
els such as those based on parabolic equations. It is, however,
somewhat more complicated than the other approximations.
A simpler approximate single-scatter solution is formulated
in Appendix A and provides answers that are almost identi-
cal to the single-scatter result.

Note that the standard pressure matching inherent in
most finite-difference and finite-element PE’s results in level
errors of 5-7 dB, with energy loss for upslope propagation
and energy gain for downslope propagation. Thinking of the
up- and downslope cases as representing propagation into
regions of higher and lower mean density, we can say that

e F = 250 He
] R = 40km
™ S0= 500m
200 -
- |
E 4001
=
-1 |
g 800+
a
800
o0+ — =—= T T
45 40 5 30 25 20 15

[ns; [dB)

FIG. 18. Coupled-maode resulis for the 12.7° wedge [rwo way (—), outgo-
ing component (- - -}, and single scatter (--+) .
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FIG. 19. Coupled-mode results for the 12.7° wedge [two way (—),
p/(pc)"'? matched (- --), p/p'" matched (-+), and p matched (----)].

the energy loss and gain in the two cases is consistent with
the errors predicted by the 1-D analysis in the previous sec-
tion. The magnitude of the error varies in a complicated
manner with the parameters of the problem, but in our tests
with the wedge problem tends to increase with density con-
strast and slope.

IV. RECIPROCITY

A simple but often neglected check on solution accuracy
can be done by interchanging source and receiver and verify-
ing that the transmission loss is identical at the receiver. Ac-
cording to the principle of reciprocity, this property should
hold for problems with arbitrary sound-speed dependence
even when absorption is present. (This is discussed more
completely in Ref. 13.) Of course, this is a necessary but not
sufficient condition for solution accuracy since even an in-
correct model may happen to satisfy reciprocity. Neverthe-
less, this simple test is useful in eliminating many incorrect
solutions.

In Fig. 20, we present transmission loss curves taken
with source and receiver at a depth of 50 m in the wedge.
(Other properties of the wedge problem are unchanged.)
The solutions obtained using the traditional pressure-match-
ing condition show a discrepancy of more than 12 dB be-

Loss (dB)

T
30 a2 a4 e 38 40

Range (km)

FIG. 20. Reciprocal propagation results. Superposition of upslope and
downslope results using the single-scatter formulation (—), and pressure
matching (- - -).
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tween the upslope and downslope solutions (dashed lines):
Even if we did not know the exact solution, we could con-
clude that at least one of the solutions is in serious error. In
contrast, the single-scatter solution satisfies reciprocity to
within 0.2 dB as indicated by the coincidence of the upslope
and downslope curves (solid lines) at a range of 4 km.

V. SUMMARY AND CONCLUSIONS

We have shown that certain common one-way formula-
tions used in both PE and coupled-mode models treat verti-
cal interfaces in an approximate fashion leading to energy
loss for upslope propagation and energy gain for downslope
propagation. Improved interface conditions have been sug-
gested based on an analysis of the simpler 1-D wave equation
and validated using a one-way coupled-mode formulation.
Similarly modified interface conditions have recently been
implemented in a finite-¢clement PE demonstrating the an-
ticipated improvements for PE models as well.?
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APPENDIX A: COUPLED-MODE FORMULATION FOR
THE SINGLE-SCATTER APPROXIMATION

Let us first review the basic coupled-mode formulation
following closely Evans.? As for the 1-D wave equation, we
begin by dividing the problem into N segments in range.
Neglecting contributions from higher-order modes, the gen-
eral solution in the jth segment can be written as follows:

plnz) = i [ﬂi,,fl () + b‘,,.ﬁ%,(r)ll’;n (2),
m= 1 (AD)
where H 1,2 are the following ratios of Hankel functions:
HU,(r) = [HE(KLD/HE (kL)) (A2)
B2, () = [HE KLN/HP KLy )] (A3)
and Z,, (2) is the mth mode of the depth-separated equation:

d( 1 dZ@) ( o’ _ ) Zz) =0
A& dz (p(z] dz ) L e (2) ) ) ’
Z(0) =0, -
dZ
=y =0. A4)
dz( ) (

In the remainder of this analysis, we replace the Hankel
functions by their large argument asymptotic representa-
tion:

BV, () ~H U, (r) = [r,_ Iy ™™ 7 0, (AS)
HYE (D ~H2, (1) =[(r,_ /rye "= ", (A6)

Next, we impose continuity of pressure at the jth inter-
face that leads to
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M
z (a[;"+l+b1;"+l)zfn+ I(Z)

me= |

Z [ah H Y (r) + b4,H2,(r;)]2,(2). (AT)

This matchmg condition involves a continuum of depth
points in that we require continuity of pressure for all z val-
ues. In practice, however, we are going to work with a limit-
ed mode set and therefore we need a finite set of conditions
that relate the M mode coefficients a,,, b,,. This can be done
in several ways. For instance, we could require continuity of
pressure at M discrete depth points z,,, m =1,...M. We
shall impose a moment condition that the error considered
as a function of depth should have vanishing components of
each of the first M modes. Thus we apply the operator,

.[ « )Z**'(z)

P£i1(2)
to our matching equation where / = 1,...,M. Because of the
orthogonality property,
J' z,f"+ I(Z)z,j-l- l(z)
2i1(2)

only one term remains from the sum on the left. Therefore,
we have

2, (AB)

dz=35,,, (A9)

M
a4 byt = ¥ [dHU,(r) + bLH2, (r)]C0.,
m=1
(A10)
where
i+1 i
Tra 7,[' Z @75 (2) dz. (A11)
Piv1(2)
In matrix notation, we can write this equation as
2t W =8 (W9 + HL DY), (A12)

where, H} and H, denote the diagonal matrices with entries
HV, (r;) and HY, (r;), respectively. In addition, Cis the
matrix with entries ¢,, and a, b are column vectors with
entries a,, b,, respectively.

We next impose continuity of radial particle velocity.
The particle velocity is proportional to

1 d(n2)
p o
— 2 k1, [a’ HY, (r)— b{,,HZ’,',,(r)]Z’,,, (2).
p m=1
’ (A13)
This time we apply the operator,
f(-)Z{“(z)dz, (Al4)
to obtain
. - M . -
(d*'=bi*") = 2 @ Y, () + b HZ, (1) ),
(A15)
where
kK, J’Z’i“(Z)ZL(Z)
Cpn = — d. Alé6
") T @ e
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Note that &, differs from &,, in the density term of the
integral and by a ratio of horizontal wave numbers.

In matrix notation, this matching condition can be writ-
ten as

H_p+ — QW4 + Hib). (A17)
Combining this equation with the pressure-matching condi-

tion of Eq. (A12), we obtain an explicit expression for &/ *!
and Wt

at! R, R
el = Lo mlad )
where
R| =@+ O)H|, R} =T - OHH,,
=(O-OH, R,=}C©+OH. (A19)

In the two-way coupled-mode approach, these local
matching conditions would be assembled into a global ma-
trix with one block for each interface. For the single-scatter
approximation, the incoming wave in the left segment is as-
sumed given and we require that the solution is purely outgo-
ing in the right segment, i.e., ¥ * ' = 0. Solving for the back-
scattered amplitudes, I, we find:

W= —-R; 'Ry (A20)

Therefore, the forward-scattered amplitudes, 2/ + !, are given
by -

#*'= (R, —RR, Ry¥, (A21)
which is an explicit equation for the forward-scattered field.
The field in any given segment can then be computed by
summing the terms in the modal sum representing the for-
ward-scattered field.

We find from computational tests that an approximate
single-scatter solution works nearly as well. This solution is
obtained by neglecting lower-order terms in the single-scat-
ter recursion:

at'=Ra (A22)

Note that the matrix R, is an arithmetic mean of coupling
matrices based on pressure matching and velocity matching.
In ather words, the solution is obtained by separately match-
ing pressure and matching velocity at each interface and
then averaging the resulting pressure fields before continu-
ing the forward march. Like the single-scatter solution, one

can show that the approximate single-scatter solution con-

verges to the WKB form in the limit of an infinite number of
segments.

The approximate single-scatter solution has the advan-
tage that it can be computed without explicitly computing
the coupling matrix R,. Details are provided below for the
slightly simpler case of reduced-pressure matching.

APPENDIX B: COUPLED-MODE FORMULATION FOR
THE REDUCED-PRESSURE MATCHING
APPROXIMATION

Neglecting backscatter, the reduced pressure in the jth
segment is given by,
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b
The condition of continuity at each interface can therefore
be written,

1 =L :
z a;m+ Iz{: 1(2)
\Jpj g im=l
l M
=— z &, HV,(r)Z4,(2).
Jp_! m=1
In order to take advantage of the mode orthogonality, we
apply the operator,

(B2)

zJ’+ 1
f( i W (B3)
P,+ 1 (2)
yielding
M
=N d HY,(r)C,, 1=L1..M, (B4)

m=1
where
i+ i
z, = 4 (z)Z (z) G (BS)

VP (2)p; 1 (2)

The denominator in this coupling term is a geometric mean
of the analogous terms obtained using pressure matching
and velocity matching,.

In matrix form, Eq. (B4) can be written,

2 = CH, 2. (B6)

We shall perform one final manipulation of this result.
Let us assume that the modes are finely tabulated on some
grid of depth points. The mth vector is then used to define
the mth column of a matrix U. For an isodensity problem,
we can then approximate the coupling matrix by the discrete
form,

CO=(U+H)'U, (BT)
which is equivalent to evaluating the coupling integral by the
trapezoidal rule. (For a variable density problem, this equa-
tion is slightly modified.) Substituting in Eq. (B6), we ob-
tain

H={Yy (U ]} (B8)

We can describe the steps in this equation as follows: one
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advances the phase of the coefficients to the next segment
then one sums up the modes to compute the field just to the
left of the interface and finally, one projects the pressure field
onto the mode set in the next segment. Computing the cou-
pling matrix would involve the calculation of the matrix—
matrix product (U * ')*U but when the operations are done
in the order indicated by Eq. (B8), one performs only the
operation of a matrix times a vector and therefore obtains a
significant savings in execution time.
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