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A tomographic scheme is presented that ingests ocean acoustic measurements into an ocean model
using data from bottom-mounted hydrophones. The short distances between source-receiver pairs
~1–10 km! means arrival times at frequencies of 8–11 kHz are readily detectable and often
distinguishable. The influence of ocean surface motion causes considerable variability in acoustic
travel times. Techniques are presented for measuring travel times and removing the variability due
to surface waves. An assimilation technique is investigated that uses differences in measured and
modeled acoustic travel times to impose corrections on the oceanographic model. Equations relating
travel time differences to oceanographic variables are derived, and techniques are presented for
estimating the acoustic and ocean model error covariance matrices. One test case using a single
source-receiver pair shows that the tomographic information can have an impact on constraining the
solution of the ocean circulation model but can also introduce biases in the predictions. A second test
case utilizes knowledge of a bias in a model-predicted variable to limit grid cells that are impacted
by the tomographic data. In this case, using the tomographic data results in significant improvements
in the model predictions without introducing any biases. ©2005 Acoustical Society of America.
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I. INTRODUCTION

Variations in the travel times of acoustic signals a
known to be related to the spatial and temporal change
water column temperatures, salinities, and currents. As s
acoustic tomography can provide relevant and important
formation on the characteristics of the water column.1 More-
over, the travel time of an acoustic pulse from fixed a
well-separated source and receiver locations may be con
ered a more robust measure of spatially averaged oce
graphic variables~e.g., sound speed or temperature! than are
point measurements.2,3 This results from the fact that th
acoustic parameter is an integral over space, while p
measurements are susceptible to local, small-spatial s
noise.

In the work presented here, we develop a tomograp
formulation that uses travel time measurements of relativ
high frequency~;10 kHz! acoustic transmissions acro
fixed, omnidirectional, bottom-mounted acoustic transduc
Measured travel times along distinct ray paths are expre
as the difference between a reference travel time~through an
environment with a reference sound speed structure! and a
weighted sum of sound speed perturbations~with respect to
the reference sound speed structure! in a gridded plane con
taining the source and receiver. To constrain the solution
the sound speed perturbation vector, a spatial covaria
structure is imposed. Instead of directly inverting for t
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sound speed perturbation~i.e., inverse tomography!, we uti-
lize a suboptimal assimilation process in which expressi
relating the acoustic travel time measurements to ocean v
ables are used to ingest the acoustic data into a dyna
ocean model of the region. A spatial covariance mat
weights the acoustic observations and spatially distribu
their influence throughout the ocean model domain. The
similation scheme allows the acoustic observation to loca
influence both nowcasts and forecasts of variables in
ocean model~e.g., water temperature!. Our system is some
what similar to that which would be implemented using
dynamic state space/parameter estimation scheme~e.g., a
Kalman filtering approach4! except that dynamic updates t
the covariance matrix are not performed with every new
of acoustic observations and model fields.

As a test bed for our tomographic studies, we have u
two primary assets. The first is Pacific Missile Range Faci
~PMRF! off the west coast of Kauai, Hawaii. PMRF has 1
bottom-mounted sources that operate in the 8–11-kHz ba
PMRF has an additional 178 bottom-mounted receive
These assets, used by PMRF primarily for localization, co
munications, and safety purposes, provide for the capab
of transmitting and receiving acoustic data throughout
range. The distances between source-receiver pairs in
shallow regions of the range are relatively small~as short as
1 km!. The arrival times in the 8–11-kHz band are read
detectable. Although the configuration of all hydrophon
3539539/16/$22.50 © 2005 Acoustical Society of America
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FIG. 1. Domain and depth field for the
Kauai ~island to the east! and Niihau
~island toward the west! ocean model.
PMRF reaches from between the is
lands northward to;23 °N.
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being bottom-mounted is unconventional, such an arran
ment has tomographic benefits in that there is effectively
positional uncertainty of the sensors. However, the acou
signals of greatest use from bottom-mounted systems inte
with the ocean surface and are, therefore, subject to the
fluence of surface waves. As a result, arrival times in
relatively high-frequency range of interest~8–11 kHz! can
have considerable short-term variability due to the surf
wave fields, often the dominate source of variability.

The second asset we employed is the ocean circula
model that encompasses the waters of PMRF off the w
end of the island of Kauai~Fig. 1!. The authors develope
this model for the purposes of obtaining estimates of
spatial and temporal variations of oceanographic parame
that would impact sound speed structure. The hydrodyna
model is executed on a daily basis, predicting temperatu
~T!, salinities~S!, and currents~U! at horizontal resolutions
as high as 900 m and 28 levels in the vertical. The mo
provides a means of specifying realistic sound speed st
ture in space and time under varying tidal, atmospheric,
wave conditions. As such, the model offers a means of e
mating acoustic ray arrival times in the ocean surround
PMRF. In addition, the ocean model provides the testing
pability of a method for assimilating acoustic travel times
impact model-calculatedT, S, andU using a formulation that
is an analog of the physical-space statistical analysis sys
~PSAS! data assimilation scheme.5

Using our model-oriented assimilation approach~di-
rectly relating acoustic data to theT, S, andU of a model!
has some distinct benefits for providing more accurate mo
predictions. First, acoustic data reflect information abou
volume within the water column and provide a natural me
for obtaining spatially averaged measures of oceanogra
variables. This is opposed to single point or vertical pro
observations that are susceptible to small spatial-scale v
tions, noise, and uncertainties that may limit their utility
3540 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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ocean model inputs. Second, the PSAS scheme allows
just one source-receiver pair to influence the model soluti
in a large volume of water surrounding the path of the aco
tic ray between the source and receiver. This is achie
utilizing estimates of the spatial error covariance matrices
the acoustic observations and the model variables.

Here we present formulations for quantifying the o
served arrival times of acoustic rays whose paths have in
acted with the ocean surface. Arrival time anomalies are
termined relative to a monthly sound velocity structure ba
on the three-dimensional grid structure of the hydrodynam
model of the PMRF region. We present transforms for de
mining a model-related travel time anomaly along the path
the transmitted acoustic ray. It is shown that the differen
between the model and observed travel time anomalies
be transformed back to adjustments of model-predicted w
temperatures, salinities, and currents.

There are several elements involved with this wo
These include collection and analysis of arrival times a
arrival time anomalies for specific acoustic paths, the det
of the numerical ocean model, and the specific construc
the PSAS to relate travel time anomalies to model-predic
variables for assimilation into the ocean model. Each e
ment will be discussed as well as the details of test case
which travel times from one source-receiver pair were
similated into the ocean model.

II. THE OCEAN MODELS FOR PMRF

A hydrodynamic model, an adaptation of the Blumbe
and Mellor model,6 has been implemented for the wate
surrounding Kauai and Niihau, Hawaii~Fig. 1!. This particu-
lar version of the model uses a semi-implicit solution sche
for solving for the sea surface height field7 and a hybrid
z-level coordinate system in the vertical8 to minimize prob-
lems that can arise with the original bottom-following sigm
Lewis et al.: Model-oriented ocean tomography
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coordinate system when using steep bathymetry and rea
temperature and salinity profiles. The bathymetry~Fig. 1! is
from the Smith-Sandwell topography9 augmented with
higher resolution sounding data obtained from NOAA a
PMRF. A fundamental length scale that characterizes so
of the flow-field activity in the region is the baroclinic radiu
of deformation, approximately 20 km. Therefore, the mo
grid spacing is set at 2–3 km around the open boundarie
the domains to approximately 1 km around the shoreline
Kauai. In addition, the total horizontal domain is well b
yond 20 km off the islands.

Observed T-S characteristics were used in specifying
vertical resolution of the model. We chose the vertical g
structure~28 active levels! with higher resolution within the
top 100 m and at those depths at which salinity extrem
exist. This allows advective inflow conditions specified at t
open boundaries to better maintain the observed T-S st
ture within the model domain.

We utilized the open boundary condition presented
Lewis et al.,10 specifying the tidal sea level elevations a
phases along the open boundaries of the model domains
boundary values were obtained from the Oregon State U
versity tidal model TPXO.311 but ‘‘tuned’’ to match observed
amplitudes and phases for Kauai. The model was force
the open boundaries with theM2 , S2 , N2 , O1 , K1 , andP1

tidal constituents. The model error for the largest tidal co
stituent, theM2 tide, is less than 4%, and the errors for t
other constituents are similar or smaller in magnitude.

In addition to the ocean circulation, surface waves w
modeled using Delft University of Technology’s SWA
~simulating waves nearshore!.12,13 SWAN is a two-
dimensional wave spectra model that can perform usin
curvilinear-orthogonal grid. The two-dimensional spec
ability results in being able to realistically simulate the wi
range of wave conditions typically encountered in t
world’s oceans. A curvilinear-orthogonal grid allows SWA
to use the same computational grid~and associated depths!
as that used by the ocean circulation model. The mean
allowing the interactions between currents and waves
greatly facilitated with the use of the same grids by both
wave and circulation models.

A. Initialization and forcing fields

In addition to tides, the model utilizes the Navy’s dai
modular ocean data assimilation system~MODAS! as a daily
estimate of the three-dimensionalT-S structure within the
model domain. This is used to introduce the mesoscale
culation field into the model domain. MODAS fields us
satellite sea surface temperatures, satellite altime
bathythermograph data, and results from other models to
termine theT-S structure within a region. Our ocean mod
employs a scheme that nudges14 the model-predicted tem
peratures and salinities to the MODAS temperatures and
linities. The nudging parameterT* had a value of 0.75 days
representing a fairly strong nudge. However, tests sho
that the model-predictedT andSoften had substantial varia
tions away from the MODAST-S values as dictated by th
governing physics within the model.
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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Atmospheric forcing from the National Centers for E
vironmental Prediction~NCEP! includes momentum, hea
and mass fluxes at the air-sea interface. With these, the o
model can include wind forcing, precipitation minus evap
ration, and sensible, evaporative, and radiative heat flu
The SWAN model is forced by the NCEP surface wind v
locity and wave fields that are generated far from Hawaii a
then propagate to the islands. To account for this latter fac
SWAN ingests NOAA’s WaveWatchIII wave spectra info
mation along the open boundaries of the model domain.

Since waves can have a significant impact on oc
circulation,15 the ocean circulation model utilized the surfa
wave model results to calculate~1! wave-enhanced bottom
friction, ~2! Stokes drift and the Coriolis wave stress,~3!
radiation stresses,~4! wave-related mixing length at th
ocean surface, and~5! the virtual tangential surface stress.

B. Model accuracy

As a measure of the accuracy of the ocean circulat
model, predictions and corresponding observations of w
temperature were used to calculate an rms model error
function of depth. During June and July 2003, 175 bathyth
mographs~BTs! were collected. Model temperatures we
interpolated in space and time to these BT data to calcu
the rms error forT. Values of rms errors range fromDT
50.22 °C to 0.96 °C, which translates to sound speed er
of 1.2–4.8 m/s, assuming]c/]T'4.947 m/s/°C, wherec is
sound speed. Since salinity does vary significantly w
depth in the Hawaii region, errors in predicting water te
perature will be the primary cause of errors in sound spee
the water column.

III. CONSTRUCTS RELATED TO THE PSAS DATA
ASSIMILATION

Some of the forcing fields contain observations, such
the MODAS fields and the initial conditions of the atm
spheric fields. But there is very little water column data re
resented within the forcing data, especially for forcing fiel
representing future conditions. Acoustic travel time inform
tion representsin situ data that could be assimilated into th
ocean model to constrain the solutions of the model, a
hopefully increase the accuracy of the model.

A. Simulating acoustic paths and travel times

The ocean modelT-S structure can be used to calcula
sound speed profiles~SSP! using expressions relatingT, S,
and depth to sound speed. This was done to obtain SSPs
vertical resolution of 5 m and a horizontal resolution of 1
m. Knowing the precise locations of the PMRF sources a
receivers, we used the SSP in the Bellhop acoustic prop
tion model to calculate paths of acoustic rays between
bottom-mounted sources and receivers as a function of ti
We found that in many instances direct-path rays and sin
surface bounce rays had arrival times very close to one
other. This would have made it difficult to resolve these
rivals in field data due to finite source bandwidth. This w
verified with actual field data, with the true environment o
ten resulting in acoustic signatures that were even more c
plex than those predicted using model SSPs.
3541Lewis et al.: Model-oriented ocean tomography
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Our simulations using model results indicated that m
tiple surface bounce acoustic rays were stable in the p
they took from source to receiver. Moreover, their arriv
times were well separated from the early direct-path a
single-surface bounce arrivals. As a result, their arrival tim
could be estimated fairly well. This provided a basis in o
analysis of actual acoustic data for delineating times to c
sider for the arrival of rays traveling along specific path
Moreover, multiple surface bounce rays provide a be
sampling of the water column. Due to the drop in signal-
noise for higher multiple surface bounce acoustic paths,
concentrated on analyzing paths that bounced off the oc
surface only twice.

Although acoustic simulation models are fairly accura
they do have some limitations. For example, our model
does not simulate the Doppler impacts of the motion of s
face waves or surface roughness. However, simulations s
that these factors can be effectively eliminated in the ob
vations by averaging the arrival times over a number
pings that cover many cycles of surface motion. Anoth
possible limitation is the error resulting from inaccuracies
the exact positions and depths of the source, receiver,
where a ray path bounces off the ocean bottom between
source and receiver.

Our analyses require a reference sound speed stru
cR . This was determined using monthly climatologicalT-S
fields for the region shown in Fig. 1. Thus,cR is a four-
dimensional field with spatial resolution equal to that of t
ocean circulation model and varying monthly. In additio
the PSAS assimilation scheme requires reference fields foT,
S, and current velocities. Again, the monthly climatologic
T-S fields were used, while a reference velocity of 0 m/s w
used throughout space and time.

B. Observed travel time anomalies

At a given time, an observed travel timeto for a particu-
lar acoustic path can be combined with a reference oc
arrival time tR to determine atravel time anomaly:

DtR5to2tR . ~1!

The reference travel time is some predetermined stan
derived by a computation of the travel time through the r
erence environment using a standard ray propagation m
~e.g., Bellhop!.

Any means of determining an observed travel tim
anomaly will include some measurement error, and we r
resent the errors associated with an observation asez(t):

DtTrue5DtR1ez. ~2!

C. Model-predicted travel time anomalies

We assume that the path of an acoustic ray of inte
only deviates slightly from the path resulting from the refe
ence sound speed structure,cR , at any time. Thus, tempora
changes in travel time are primarily associated with chan
in propagation speed along the reference medium path~the
‘‘frozen ray’’ approximation!. If we know the path an acous
3542 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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tic ray would take through the model domain~individual grid
cells denoted byi 51,2,3,...,N), we can calculate an esti
mated arrival time using

tm5S@DLi /~cm,i1Um,i !# ~3!

where the subscriptm denotes model-predicted values,cm,i

is the sound speed in theith model grid cell,DLm,i is the
distance that the ray travels through theith grid cell, and
Um,i is the component of the three-dimensional current alo
a particular direction of interest responsible for effective
increasing or decreasing the sound speed. The model s
speed anomaly for each grid is

Dci5~cm,i1Um,i !2cR,i , ~4!

wherecR,i is based on referenceT andS values.
Rearranging~4!, substituting into~3!, linearizing using

cRi
2 @Dci

2, and rearranging the result in terms of a travel tim
anomaly~relative to the exact sametR as in the expression
for DtR) give

Dtm~ t !52(
i 51

N
DLiDci~ t !

cR,i
2

5bDcT, ~5!

whereN is the number of model grid cells through which th
ray travels. On the very right-hand side of~5!, we have rep-
resented the summation as the multiplication of two vecto
b being the vector of the constant2DLi /cR,i

2 terms andDc
being the vector of the time-varying termsDci(t).

As with the observed travel time anomaly, the mod
predicted travel time has errors relative to the true va
DtTrue:

DtTrue5Dtm1eDIS~ t !1eLIN~ t !1eTSU~ t !. ~6!

Errors due to the discretization process~representingDtm by
a summation overN grid cells as opposed to an integral ov
a continuum! are denoted byeDIS(t). The errors associate
with the linearization approximation (cRi

2 @Dci
2) are con-

tained ineLIN(t). The errors resulting from the difference
between model-predicted sound speed~i.e., T, S, andU! and
the true sound speed are denoted byeTSU(t).

The reader should note that we assume that the meas
ment error,ez(t), is a random variable that is uncorrelate
with the model error terms.

D. The tomographic expression

Equation~5! must be transformed to relate travel tim
anomalies to ocean model variables~T, S, and U!. We ex-
press the sound speed in the ocean as a sum of a refe
sound speed and a sound speed perturbation:

c5cR1
]c

]T
DT1

]c

]S
DS1U5cR1dc. ~7!

For local ocean temperatures and salinities and small t
perature and salinity variations, we can approximate the
partial derivatives as

]c

]T
DT'4.947DT5aDT,

]c

]S
DS'1.34DS5bDS,
Lewis et al.: Model-oriented ocean tomography
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wherea has units of m/s/°C andb has units of m/s/ppt. We
note thata and b are only gross approximations to]c/]T
and]c/]S, but their use is required to maintain the linear
of the set of expressions used in the assimilation proces

If the ocean model provides a reasonable first-gues
T, S, andU, we can rearrange~7! to give

Dci5aDT1bDS1U ~8!

for every grid cell in the ocean model. We use~8! to trans-
form ~5!:

Dtm5bDvT ~9!

where now

b5@2DL1 /cR,1
2 2DL1a/cR,1

2 2DL1b/cR,1
2

¯

2DLN /cR,N
2 2DLNa/cR,N

2 2DLNb/cR,N
2 #

and theDv vector is

Dv5@U1 DT1 DS1 ¯ UN DTN DSN#.

Each of the parameters inDv is the model-predicted variabl
relative to the reference value, all of which are known. E
sentially,~9! is our tomographic relationship, relating acou
tic information toT, S, andU.

We let the total number of rays present in any set oP
source-receiver transects beM. We definez(t) as the column
vector of theM travel time anomaly measurements (DtR’s!
at timet. We define the matrixH as that whose rows are th
aboveb. Since each ray path may not go through the sa
number of grid cellsN, the number of columns inH will be
three times the maximum of theN’s (Nmax), and there can be
a number of zero entries inH. Finally, we definex as the
33Nmax column vector with theDv for each grid cell
through which a ray path travels.

We can relate all these matrices by themeasuremen
matrix residual equation:

z~ t !2Hx~ t !5residual.

The goal of the data assimilation method is to minimize
residual. We note that, if the acoustic model grid is not
incident with the ocean model grid, the measurement ma
H must be premultiplied by an interpolation matrix that ma
the acoustic model grid onto the ocean model grid. In t
study, the two grids coincide.

E. Assimilation of tomographic information into the
ocean model

In our assimilation formulation, we define ocean para
eters throughout the ocean model grid space asx, xF, andxA

as vectors representing thetrue state, the forecasted estimate
prior to assimilation, and theanalysis estimate~after assimi-
lation!, respectively. The vectorsx, xF, andxA are time de-
pendent, and the three-dimensionalT, S, andU fields form
our state vector.

The basic expression we will use to determine the an
sis ~updated! field combines the forecast estimatexF with the
acoustic-related measurementszR ~the DtR’s! using the
model-related measurement matrixH as follows~the PSAS
formulation!:5
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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xA5xF1K ~zR2HxF!. ~10!

As mentioned above,zR2HxF is the measurement residua
the difference between the observation and the foreca
variable.K is the residual~Kalman! gain matrix:

K5PFHT~HPFHT1R!21.

PF is the spatial covariance of errors in the forecast, andR is
the spatial covariance of errors in the observations. The
mulations for these error matrices will be presented in
following section. But it is readily seen that, ifR@HPFHT,
the Kalman gainK approaches zero:xA5xF. Also, the Kal-
man gain distributes the measurement residual through
the forecast model domain. The matrixPF can have values
for each grid cell, and, thus,K will have a value for each grid
cell, even for just one source-receiver pair. This is a sign
cant advantage over inversion tomography where the cov
ance matrix tends to be limited to just the region bei
acoustically illuminated. Typically, corrections based on o
servations are assigned mostly to regions closest to the
servations and areas where the forecast model error is
highest.

Note thatH is used when determiningK and during the
assimilation process expressed in~10!. CalculatingK is per-
formed prior to the assimilation process. Thus, even tho
we could use model-predictedT andS to obtain better esti-
mates for]c/]T and]c/]S when employing~10!, we do not
have these values when calculatingK . This is the reason we
employ the gross approximations of]c/]T5a and ]c/]S
5b, to makeH consistent between the process of calcul
ing K and then later using~10!.

IV. SPECIFYING THE ERROR COVARIANCE
MATRICES

For this preliminary study,~10! was simplified by as-
suming that travel time anomalies were primarily a result
the differences between predicted and ocean water temp
tures. In this case,xF and xA are column vectors of fore
casted and analysis temperatures relative to the monthly
erence temperatures:xF5Tmodel2Treferenceand xA5Tanalysis

2Treference. SinceTreferenceappears on both sides of~10!, we
see that the expression reduces to

Tanalysis5Tmodel1K ~zR2HxF!. ~11!

The rows of theH matrix now consist of

b5@2DL1a/cR,1
2 2DL2a/cR,1

2
¯ 2DLNa/cR,N

2 #

for each ray path. As before,zR is the column vector of
‘‘observed’’ travel time anomalies. Thus, ifK is properly
determined, all the terms on the rhs of~11! are defined, and
we can solve forTanalysis.

A. Calculating the covariance functions

The modification of the model variables results from t
application of~10!. As such, the magnitude of the change
a model variable is critically dependent on the error cova
ance matrices. The model error covariance matrix is defi
as

PF5E@~x2xF!~x2xF!T#.
3543Lewis et al.: Model-oriented ocean tomography



w
om

g
se

w
a

rro
nd
in
en
ar
e
t

u
tru

de
o
s
n

ri
l-
,
ur

of
o

om

an
m
s
,

Th
od
rm
e

ria

ies
nly,

as
nce
The

s
nal

a
e

g 3

s

ctor

er-
nd-
B,

s of
One

it-
the
air.

m-
ons
h
um-

en

ed

ed.
d

re-

stic

ac-
we
Of the various elements ofPF, the eTSU errors ~differences
between the model and the true oceanT, S, andU! will likely
be the most dominant. Typical values of sound speed in
ter and the magnitude of the rms errors determined fr
model/data comparisons~Sec. II B! indicate that the linear-
ization error,eLIN , is negligible: the value ofcRi

2 will be at
least four to five orders of magnitude larger thanDci

2, even
with substantial errors in salinity. Numerical simulations su
gest that discretizing the integral on the gridding scales u
by the hydrodynamic model results ineDIS<0.1 ms for rays
that interact with the surface one to three times. Thus,
ignoreeDIS and concentrate on developing a reasonable
proximation foreTSU.

The most accurate method of calculating the model e
covariance matrixPF is to use many realizations in space a
time of model-predicted variables along with correspond
observations. Typically, such observations are nonexist
One approach to deal with the lack of model-data comp
sons is to estimatePF by the spatial covariance from the tim
sequence of the model-predicted variable over a se
(x,y,z) locations:16

PF5E@~TMODEL2E@TMODEL# !~TMODEL

2E@TMODEL# !T#. ~12!

It is easily shown that the model covariance equals the s
of the model error covariance plus the covariance of the
state of the ocean. Thus,PF given by ~12! always results in
overestimating the error covariance. As a result, the rate
spatial decorrelation of the errors of a variable can be un
estimated. Therefore we would expect the observations t
more spatially limited in their impact on the analysis field
which in itself is not an adverse consequence but may
make full use of the observations.

A second method involves estimating the error cova
ance matrixPF utilizing scaled, time histories of mode
predicted temperatures. In the first step of this method
time series of errors is specified for a given temperat
T(x,y,z,t) as

Terror~x,y,z,t !5T~x,y,z,t124 hours!2T~x,y,z,t !.

Using the 24-h offset, the ‘‘errors’’ are simply a result
day-to-day variability in atmospheric forcing, the phase
the tides, wave conditions, and the MODAS T-S fields. Fr
this we can calculaten days worth of estimates of errors~for
our study, errors at hourly intervals! for the ocean variableT.
The second step is the scaling of the errorsTerror. This scal-
ing process relies on the existence of model predictions
corresponding observations with which to calculate an r
model error. In our case, 175 bathythermographs were u
to calculate an rms error forT as a function of depth. Thus
eachTerror(x,y,t) for a specificz can be scaled@each value of
Terror(x,y,z,t) increased or decreased# so that the model-
model rms errors match the observed-model rms errors.
scaling allows us to produce estimates between the m
and the true state of the ocean that are realistic in that the
model-model differences match rms model-data differenc
We use the scaled time histories to calculate the approp
spatial covariance matrix using
3544 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
a-

-
d

e
p-

r

g
t.

i-

of

m
e

of
r-
be
,
ot

-

a
e

f

d
s
ed

is
el
s

s.
te

PF5E@~Terror2E@Terror# !~Terror2E@Terror# !T#. ~13!

Another consideration is the length of the time ser
over which the spatial covariance is calculated. Commo
the spatial correlation structure varies with factors such
the phase of the internal tides. Thus, the error covaria
matrices should be recalculated on a fairly regular basis.
time span over whichTMODEL or Terror extend should par-
tially reflect conditions during which travel time anomalie
are to be assimilated. If the fortnightly phase of the inter
tide is the primary factor controlling spatial structure, then
time series of;3 days may be appropriate. In this study, w
consider estimates of the model covariance matrix usin
days of hourly data.

The observation error covariance matrix is defined a

R5E@~ez1E@ez# !~ez1E@ez# !T#.

There are two components of the measurement error ve
ez. The first component is given by

s t5
1

bwASNR
,

wherebw is the bandwidth of the signal (bw52pD f ) and
SNR is the signal-to-noise ratio. In our experiment p
formed at PMRF during June–July 2003, we had a ba
width of 3000 Hz. Assuming a signal-to-noise ratio of 10 d
this error is around 32ms.

The second component ofez is due to the fluctuations in
the water column temperature and salinity, the roughnes
the ocean surface, and uncertainties in the bathymetry.
approach to estimate this error is from the acoustic data
self. This is done by estimating the standard deviation of
arrivals for a set of pings between a source-receiver p
This information is presented in the following section.

B. Implementation

In implementing our data assimilation scheme, we li
ited the model grid cells impacted by acoustic observati
to those within 20 km of any model grid cell through whic
ray paths being considered traveled. This reduced the n
ber of covariance functions that had to be calculated. IfLmax

is the number of grid cells within the 20-km range, th
PFHT for the p ray is anLmax column vector. There are 12
monthly column vectors (cR for a given grid cell varies by
month! for the any ray path. All the elements were calculat
and stored in a database. Similarly, all terms in theHPFHT

matrix are known, and each monthly matrix was calculat
The monthlyHPFHT matrices were inverted and multiplie
by PFHT to give 12 Lmax3Pmax arrays, wherePmax is the
number of ray paths being considered~i.e., there arePmax

arrival time anomalies!.
Thus, the analysis and assimilation software only

quires the monthly databases of~1! the PFHT(HPFHT)21

elements,~2! the reference temperatures along the acou
paths being considered@for Dv in ~9!#, and ~3! the
2aDLN /cR,N

2 values@for b in ~9!#.
As in any assimilation scheme, there are additional f

tors that have been incorporated in our process. First,
Lewis et al.: Model-oriented ocean tomography



FIG. 2. Matched filter output for a
single transmission~top!, an average
of 12 transmissions~middle!, and an
average of 36 transmissions~bottom!.
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assumed that the MODAS temperature field,TM(x,y,z), re-
flects a norm for theTanalysis(x,y,z) field. We used the 175
bathythermographs~Sec. II B! to calculate relative ranges fo
each vertical level of the ocean model:Ra(z)5T(z)max

2T(z)min . We then limited the replacement of the elements
the Tmodel field to those grid cells in which the assimilatio
process resulted in~a! a water temperature within the rang
of TM(x,y,z)6Ra(z)/2, ~b! a water temperature closer t
TM(x,y,z)2Ra(z)/2 whenTmodel,TM(x,y,z)2Ra(z)/2, or
~c! a water temperature closer toTM(x,y,z)1Ra(z)/2 when
Tmodel.TM(x,y,z)1Ra(z)/2. These limitations were found
to aid in preventing the assimilation process from mak
model-predicted temperatures that were already too c
~warm! from being made even colder~warmer!. This is not
to say that other forcings cannot result in model-predic
temperatures that drift away from theTM(x,y,z)6Ra(z)/2
field. Only the assimilation process is constrained to alter
model-predicted temperatures toward a range about
MODAS temperatures.

V. THE ACOUSTIC DATA

Each signal transmitted from a PMRF source is acqui
by an acoustic data acquisition system~ADAS! at designated
receivers. The transmitted signal is then replica-correla
with the received signal. The received signal is modeled a
sum of ray arrivals given by

r ~ t !5(
n

ans~ t2tn!,

wherean is the weight associated with each arrival,s(t) is
the transmitted signal, andtn is the delay associated wit
each arrival. When correlated with the transmitted signal,
output will have peaks at times corresponding to the tra
times of eigenrays between the source and receiver. T
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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are two sources of error in the estimation of travel time if w
use the above representation. First, the sound channel is
persive, and we cannot expect the transmitted signal shap
remain unchanged as it propagates through the channel.
second error is because we have not correctly modeled p
changes that occur during propagation~due to caustics or
boundary reflections!. Simulations show that the errors i
arrival time estimates due to both these causes are of
order of tens of microseconds, which is less than the erro
arrival time estimates as a result of the finite source ba
width. Thus, these errors can be ignored for our applicati

Two candidate transmit signals were tested: a lin
chirp and a 511-digitm-sequence. In areas where the aco
tic signal interacts with waves on the ocean surface, th
can be a Doppler shift that compresses or elongates the
nal envelope, depending on the direction of motion of t
ocean surface relative to the incident acoustic ene
Matched filter output of this Doppler-shifted signal gives ri
to errors in~a! estimating the arrival time and~b! the ampli-
tude of the matched filter output of each arrival. Analysis
the errors in estimating arrival times showed that the err
in the phase-coded sequence were less than that of the
signal. However, the amplitude of the matched filter outp
remained practically unaltered in the case of chirp sign
while in the phase-coded sequence it is reduced substant
This resulted in greater difficulties in detecting a pha
coded signal in the presence of background noise. Since
eraging can eliminate the error in the arrival time due
surface motion, the transmissions used in this study w
chirp signals with a center frequency of 9.5 kHz and a ba
width of 3 kHz.

To improve the signal-to-noise ratio and to reduce
impact of surface motion, we averaged over a number
acoustic transmissions. Under normal circumstances
would have been appropriate to send a large train of acou
3545Lewis et al.: Model-oriented ocean tomography
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FIG. 3. Top panel—bathymetry and
locations of the source~* !, receiver
~s!, and where thermistor data wer
collected ~n!. Bottom panel—
examples of ray paths between th
source and receiver.
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pulses and perform an average over this train of puls
However, this was not possible because of ‘‘cross talk’’ b
tween the transmitter and receivers at PMRF. Instead,
transmitted a sequence of 12 acoustic transmissions that
sisted of four groups separated by 8 s. Each acoustic tr
mission had a duration of 0.1 s, with an interval of 0.4
between each transmission. The number of pulses in a g
was restricted to three transmissions to avoid interfere
due to the cross talk. The distance to the nearest receive
this limitation. The maximum distance between the sou
and selected receivers dictated the 8-s separation betw
groups of transmissions. The string of 12 transmissions
repeated three times with an interval of about 30 s. T
length of each train of pulses~i.e., about 28 s! and the time
interval between each train were selected on the basis o
requirements of the data acquisition system.
3546 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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The matched filter outputs for a varying number
transmissions are shown in Fig. 2. The top panel shows
output using only one transmission. The output using
average of 12 transmissions is shown in the middle pa
and the output using the average of 36 transmission
shown in the lower panel. We see that a considerable
hancement of the signal-to-noise ratio is achieved by ave
ing over 36 transmissions.

The arrival structure in Fig. 2 consists of one strong
arrival followed by three weaker arrivals. An eigenray17

analysis for this particular source/receiver pair was p
formed using a sound speed field for the region obtain
from the ocean model. Based on this analysis, the ear
group of arrivals consists of rays that travel from source
receiver without interacting with either the ocean surface
bottom and others that include a ray that interacts with
Lewis et al.: Model-oriented ocean tomography
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FIG. 4. Standard deviation of the ar
rival times for acoustic data betwee
PMRF hydrophones D9 and D12 dur
ing late June and early July 2003 a
PMRF.
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surface only once and rays that hug the bottom and h
repeated interactions with the bottom. The arrival times
rays that have only interactions with the bottom carry lit
information about the bulk of the water column. This pl
the problem of delineating individual ray arrival times with
the first group of arrivals lead us to neglect these arrivals
our tomography analysis.

The subsequent three arrivals in Fig. 2 correspo
to rays that have two, three, and four surface bounc
respectively. As mentioned before, we concentrated on a
lyzing the path that bounced off the ocean surface only tw
due to the drop in signal-to-noise for higher multip
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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surface bounce acoustic paths~the third and fourth arrivals!.
For the initial development and testing of this techn

ogy, we worked with just one ray path. The ADAS was us
to collect travel time observations for a double-surfa
bounce ray path at PMRF just offshore of the 90-m isob
~Fig. 3!. The ray path was between a bottom-mounted sou
~D9! some 3.5 km from a bottom-mounted receiver~D12!.
From an eigenray analysis performed using a mean so
speed structure for the area, the arrival time of a ray with t
surface bounces is about 2.3 s. This is used to readily id
tify the arrival time of the two-surface bounce ray in th
ADAS data~Fig. 2!. An enhanced view~not shown! of the
-
h
e

FIG. 5. Calculated travel time anoma
lies for a two-surface bounce ray pat
over a 3.5-km distance between th
PMRF source D9 and receiver D12.
3547Lewis et al.: Model-oriented ocean tomography
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FIG. 6. Hourly temperature profiles
for 3 July 2003 at the thermistor site
shown in Fig. 3: observed~top! and
predicted, no assimilation~bottom!.
The MODAS temperature profiles fo
that date and location are also show
~solid red!, along with the observed
ranges of temperatures~horizontal
solid red! determined from the 178
BTs, centered on the MODAS tem
peratures.
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matched filter output corresponding to the arrival time
this ray indicates multiple peaks that are likely the result
the roughness of the ocean surface and the ocean botto
order to determine the arrival time of a particular ray, w
performed cluster analysis of the arrival times and their re
tive amplitudes of all arrivals that represented the acou
ray of interest. The centroid of the cluster of peaks was u
as the estimate of the arrival time. In addition, the varian
3548 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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of the cluster of peaks~arrival times! was used to estimate
the error covariance matrixR.

The data were used to estimate theez error term for the
two-surface bounce ray between D9 and D12. The stand
deviations of the all arrivals for sets of pings covering
180-h period are shown in Fig. 4. As can be seen, there
significant amount of variability in the standard deviatio
varying from 0.5 to 6 ms. The mean was 1.8 ms. We n
Lewis et al.: Model-oriented ocean tomography
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FIG. 7. Observed travel time anoma
lies (zR! and model-predicted trave
time anomalies (HxF! using~12!. Each
dot represents one time step~100 s! of
the numerical ocean model. The varia
tions of HxF with K50 ~no assimila-
tion! are shown by the bottom curve.
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that thisez error is orders of magnitude greater than thes t

error due to noise in the signal and the limited bandwidth
the signal~32 ms!. Thus, we can neglects t .

VI. DATA ASSIMILATION TEST CASE, JULY 2003

During an Office of Naval Research experiment18 at
PMRF during June–July 2003, a series of thermistor stri
were placed along the 90-m isobath just shoreward of
D9-D12 source-receiver pair. The distance between the
D12 ray path and the thermistor arrays was;0.5 km. As
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
f

s
e
9-

such, the thermistor data provide a means of assessing
impact of assimilating the D9-D12 arrival time anomaly da
into the ocean circulation model.

During 30 June–3 July 2003, the ADAS was used
generate 8–11-kHz chirps~linear FM sweep! with a duration
of 100 ms from D9. The signal was transmitted 36 times o
a 2.5-min period every half hour. Data were collected fro
about 8:00 AM to about 5:00 PM local time~1800 GMT to
0300 GMT! for all 4 days. Output of each transmission in th
three chirp trains was run through the matched filter proce
and then the 36-transmission average was calculated
-
l

-

FIG. 8. Observed travel time anoma
lies (zR! and model-predicted trave
time anomalies (HxF! using~13!. Each
dot represents one time step~100 s! of
the numerical ocean model. The varia
tions of HxF with K50 ~no assimila-
tion! are shown by the bottom curve.
3549Lewis et al.: Model-oriented ocean tomography
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FIG. 9. Model-predicted hourly temperature profiles for 3 July 2003 at the thermistor site shown in Fig. 3. The MODAS temperature profiles for thatnd
location are also shown~solid red!, along with the observed ranges of temperatures~horizontal solid red! determined from the 178 BTs, centered on t
MODAS temperatures.
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cases where multiple peaks resulted in an ambiguity in
termining the arrival time, the averaged matched filter out
was low-pass filtered.

After determining all the arrival times of the double su
face bounce path between D9 and D12, travel time ano
lies were calculated for assimilation into the ocean mod
These are shown in Fig. 5. There are distinct longer-te
variations in arrival time anomalies that are likely a result
tidal fluctuations and/or surface heating and cooling. But
observed travel time anomalies also have large hour-to-h
variations. These short-term fluctuations could be the re
of signal processing~i.e., the ‘‘noise’’ seen in the curves in
Fig. 2! or actual ocean processes that alter the sound spe
the water column. When translated to geophysical fluid
namics, the short-term variations mean short space scale
nomena: e.g., solitons. Even if these fluctuations are n
result of signal processing, our ocean model does not h
the horizontal resolution~tens of meters! that would be re-
quired to reproduce such short space scale phenomena
mitigate the impact of such fluctuations in the arrival tim
anomalies~which would generate spurious gravity waves
the ocean model!, we limit the magnitude of any changes
the model-predicted temperatures to be,2.731024 °C/s for
3550 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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each time step. This would still allow up to a 5–6 °C tem
perature change over a 6-h period, a not-uncommon sig
ture of internal tides around the Hawaiian Islands.

The ocean model was first executed without any aco
tic data assimilation, and the model-predicted water temp
tures were compared to the thermistor data. A compariso
the model-predicted and observed water temperatures a
site shown in Fig. 3 on 3 July 2003 is shown in Fig. 6. The
is a distinct bias in the surface mixed layer~observed
temperatures.26 °C! where the model-predicted temper
tures are too warm. For the cooler waters at depth, the sc
is considerable, with the model predictions being as much
about 0.8 °C too warm and 2.2 °C too cool.

A. Tests of assimilation parameters

We used ez51.86 ms, or R5(1.8631023 s)253.46
31026 s2. For estimatingPF, we have put forth two possible
methods: those in Eqs.~12! and~13!. As a measure of quan
tifying the magnitude of the impact of assimilating th
acoustic information for differentPF’s, we compared the two
quantities of the measurement residual,zR and HxF. Recall
thatzR is the observed travel time anomaly~Fig. 5! andHxF
Lewis et al.: Model-oriented ocean tomography



of
,

-

FIG. 10. A scatter plot of model-
predicted water temperatures at one
the thermistor strings for 3 July 2003
with ~ordinate! and without~abscissa!
assimilation. Points below the diago
nal line indicate that the assimilation
process resulted in cooling.
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is the corresponding travel time anomaly predicted by
ocean model. If the effect of the assimilation is significa
thenHxF→zR over time.

We first usedPF as defined in Eq.~12! with the time
series used to calculatePF being 72 h of temperatures fo
each model grid cell. An example of the variations ofHxF

andzR is shown in Fig. 7. Each dot in Fig. 7 represents o
time step of the ocean model~100 s!. When the assimilation
process started,HxF was approximately twice as large aszR ,
with about a 4-ms difference between the two. Within thr
time steps~and, thus, three new sets ofTanalysis ingested by
the model!, HxF was reproducingzR quite well. This good
reproduction continued for the next 3–4 h. By about 12
hours local time, the difference betweenzR andHxF began to
increase, reaching a maximum of the order of 31 ms by
18:00 hours local time.

A similar test was conducted usingPF as defined in~13!,
and the results are shown in Fig. 8. As before, the assim
tion initially resulted in a good reproduction ofzR . But, in
this case, the good reproduction lasted longer, for about
h. By 15:00 hours local time, the differences betweenzR and
HxF became larger but were noticeably smaller than th
shown in Fig. 7. By 18:00 hours, the differences were of
order of 2 ms.

We note that, as the differences betweenzR andHxF in
Figs. 7 and 8 increase,HxF is characterized by higher fre
quency oscillations. This type of variability commonly ind
cates that other model forcing~e.g., tidal, atmospheric, etc!
is substantial enough to counter the adjustments resu
from assimilating the observed travel time anomalies, t
explaining the increasing differences betweenzR and HxF.
The bottom curves in Figs. 7 and 8 showHxF with no as-
similation. It is obvious that one of the other forcings
pushing HxF to become more negative after about 14:
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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hours, with a strong negative trend after 15:30 hours. Thi
opposite to the trend ofzR .

Based on the results shown in Figs. 7 and 8, we use
~13! for definingPF for our assimilation exercises. In doin
so, we calculated the value ofHPFHT for the single acoustic
path between D9 and D12. This value was 7.0131026 s2.
Thus,HPFHT was about twice that ofR (3.4631026 s2).

B. Impact of assimilation process, 3 July 2003

Simulations were performed with the assimilation pr
cedure executed whenever there were any arrival t
anomaly data within 0.5 h of the model simulation time. T
PF matrix was determined using~13! with 3 days of hourly
model results. In Fig. 9 we show the model temperature
the same thermistor string whose data are shown in Fig
~top panel!. We see that the assimilation process resulted
cooler surface waters, but the warmer surface bias still ex
It is apparent that the assimilation lowered the subsurf
water temperatures also~observed temperatures,26 °C!,
with the maximum overprediction in deeper waters be
reduced to10.5 °C. However, the model temperatures in t
lower part of the water column were lowered too much, w
underpredictions being now as large as22.3 °C.

The overall impact of the data assimilation is better d
picted in Fig. 10. In general, the temperatures of the wa
column were lowered~points below the diagonal line!, with
the cooling being larger in magnitude as the depth increa
~toward the left-hand side of Fig. 10!. We also see that the
assimilation process resulted in some increasing temp
tures~points above the diagonal! further down in the water
column. The assimilation process induced relatively mod
temperature changes for the 24-h period of 3 July 20
ranging from10.5 to 20.8 °C.
3551Lewis et al.: Model-oriented ocean tomography
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FIG. 11. Model-predicted hourly temperature profiles for 3 July 2003 at the thermistor site shown in Fig. 3. The MODAS temperature profiles for
and location are also shown~solid red!, along with the observed ranges of temperatures~horizontal solid red! determined from the 178 BTs, centered on t
MODAS temperatures.
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Comparing Figs. 6 and 9, we would conclude that
similating the one ray path had both positive and nega
impacts. On the positive side, the acoustic information
duced the number of occurrences in which the mod
predicted water temperatures were too warm. However,
assimilation failed to eliminate the warm bias of the mod
predictions near the ocean surface and actually accentu
the cool bias of the model in the lower parts of the wa
column.

The warm bias of the model near the ocean surface
a persistent feature for 30 June–3 July 2003. Using this f
we modified our process such that assimilation occurred o
over the top 40 m of the ocean model. No adjustments ba
on the acoustic data were made below 40 m. The resul
temperature profiles are shown in Fig. 11, and these ca
compared to the profiles in Figs. 6 and 9. We see that mo
predicted near-surface temperatures better reflect the
served temperatures, both in magnitude and variability.
lower layers of the water column were still too cool, but t
assimilation process did not accentuate this bias in this t

VII. SUMMARY AND CONCLUSIONS

We have presented a model-oriented acoustic inver
and assimilation technique for arrival time anomalies fro
3552 J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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bottom-mounted sources and receivers. In calculating an
served arrival time, we attempted to eliminate the impacts
Doppler shifts and scattering at the ocean surface by ave
ing over a number of pings. The reference arrival time b
tween a source-receiver pair was calculated using an aco
propagation model based on model-predicted SSPs,
specified locations and depths of the source and receiver,
the available bathymetry between the source and receive

The arrival time anomalies from only one acoustic pa
were used in a test of this technology at PMRF in Hawa
When assimilating over all model grid cells, the acous
information helped in reducing the number of occurrences
which the model-predicted water temperatures were
warm. However, the assimilation technology for this ca
introduced a distinct cool bias in the lower levels of t
water column~Fig. 9!. A second test used the fact that th
model near-surface temperatures at the location of the ob
vations were consistently too warm, so assimilation occur
only over the top 40 m of the water column. In this cas
knowledge of the model bias allowed the technology to
sult in better near-surface predictions without enhancing
bias in the lower layers of the water column.

In the first test, the changes in the character of the p
Lewis et al.: Model-oriented ocean tomography
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files ~Figs. 6 and 9! are readily explained by the values ca
culated for the Kalman gain matrixK . When dealing with
only one ray path, there is a single element of the matrixK
for each model grid cell. This is multiplied times the corr
sponding element ofzR 2HxF ~which itself will be a scalar
for a single ray path!. Thus, a larger value of the element
K for a grid cell results in a greater modification in th
model-predicted water temperature in that grid cell dur
the PSAS assimilation process. An analysis ofK showed that
larger values were associated with water depths from 8
300 m. As a result, the assimilation of travel time anoma
had the greatest impact on the lower levels of the model
cells. This differential impact is quite evident when we co
sider Fig. 10.

Because of the smaller values of the Kalman gain,
surface layers were not cooled fast enough before the lo
layers were cooled so much that the model-predicted arr
time anomaly matches the observed arrival time anom
The result is the overcooling of temperatures in lower lev
of the model~the more prominent cold bias in Fig. 9 whe
compared to Fig. 6! and the continuing warm surface bias f
the model results.

Since the PSAS assimilation scheme is critically dep
dent on the Kalman gain matrixK , we have attempted to
make reasonable estimates of the model and observatio
ror covariance matrices. ForPF, the scaled error approac
@Eq. ~13!# appears to work better thanPF calculated using the
model covariances@Eq. ~12!#. For R, the use of the standar
deviation of the observed arrival times provides a pract
means for determining the componentez. The results using
our estimates ofPF andR appear to provide a good assim
lation methodology of the observed travel time anoma
~Fig. 8!.

It is obvious that additional work is needed in applyin
modifications to individual model grid cells based on trav
time information from bottom-mounted hydrophones. Utili
ing higher frequencies means sampling conditions throu
out the water column over relatively short distances~3–5
km!. This is advantageous in that multiple surface boun
ray paths from bottom-mounted hydrophones are relativ
stable and are integrating over horizontal scales across w
T, S, andU tend not to vary by large amounts. On the oth
hand, there is the disadvantage that these ray paths may
up reflecting water conditions that can vary significantly
the vertical. In the first case we presented, our double-sur
bounce acoustic arrival time data and the calculated Kalm
gainK results in a bias in the model predictions~Fig. 9! even
though it is limiting the range of model solutions for wat
temperature. Work needs to be pursued to apply the mo
cations determined by the analysis fields to minimize
development of such biases. In our second test case~Fig. 11!,
we used knowledge of a model bias to limit the vertic
extent of the assimilation process and, as a result, prod
better model predictions.

In addition, we need to better understand the impact
not discerning the exact path of an acoustic ray. There
always be inaccuracies in the latitudes, longitudes,
depths of a source and receiver as well as the bathym
between the two. This leads to errors in the reference tra
J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005
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time tR and theDL ’s ~distances a ray travels through vario
model grid cells!, both determined from the results of th
acoustic propagation modeling. Bathymetric survey techn
ogy typically results in errors in depths of the order
meters. And errors in source, receiver, and bottom-bou
depths may or may not be cumulative. However, the latitu
and longitudes of hydrophones at depth~501 m! obtained
from a ship rolling on the open ocean are likely a grea
source of errors fortR and theDL ’s. It would not be unrea-
sonable to expect such errors to be as large as tens of me
Perhaps having multiple paths over numerous transects
mitigate such errors, but this has yet to be determined.
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