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Adiabatic and coupled-mode theory is amenable to precalculations that can subsequently be
used in a nonredundant manner to perform rapid three-dimensional acoustic field
computations for a complex ocean environment. Algorithms have been developed to take
advantage of both horizontal and vertical precalculated quantities. Complex three-dimensional
field computations are then reduced to “spreadsheet” type manipulations of partial solutions to
the wave equation. The method is illustrated by applying it to a Gulf Stream environment near
the continental shelf. Results from adiabatic, coupled-mode, and parabolic-equation

computations are compared.
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INTRODUCTION

Two-dimensional, range-dependent, wave-theory prop-
agation modeling techniques were introduced into under-
water acoustics with the split-step parabolic-equation (PE)
method.! The boundary value wave equation is approximat-
ed by the initial value PE and then rapidly solved by a multi-
ple application of fast Fourier transforms (FFTs). Subse-
quent methods have altered the solution algorithm but the
marching nature of the solution technique is intrinsic to PE
approaches. A straightforward extension to three-dimen-
sional (3-D) ocean acoustic modeling over large ocean areas
takes us immediately to and beyond the limit of the present
generation of computers.

The computational issues and difficulties central to the
3-D ocean acoustic modeling problem have already been
highlighted in previous papers.>® Many of these issues arise
from the marching nature of the algorithms employed; dif-
ferent source/receiver configurations relative to the environ-
ment require recomputation of the total acoustic wave equa-
tion solution. Three-dimensional variation of the
environment is associated with two features: the ocean bot-
tom and oceanography. About these we make the following
observations: topographical features are stationary and even
the ocean medium as represented by the sound-speed profile
is typically static below certain depths, depending on the
particular oceanographic conditions. Traditional marching
algorithms are in a sense redundant in that they fail to take
advantage of the stable parts of the problem. This redun-
dancy is particularly unattractive when the environment re-
mains constant and only the source/receiver positions
change.

Adiabatic and coupled-mode theory is amenable to pre-
calculations that can subsequently be used in a nonredun-
dant manner to perform rapid three-dimensional acoustic
field computations in a complex ocean environment. Algor-
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ithms have been developed to take advantage of both hori-
zontal and vertical precalculated quantities. Horizontally,
we grid the ocean environment in terms of its local acoustic
eigenvalues and normal modes. Though many grid points
may be required to represent an environment, the number of
distinct local environments is much smaller. For example, if
we select some grid points along a bottom contour, then as
long as the water column and sediment do not vary, all of
these points will be identical “acoustically.” We further take
advantage of the deep stability of the ocean in the mode cal-
culation by precalculating an impedance function that is a
composite of the local bottom type, bottom depth, and
sound-speed profile below the impedance surface. The local
modes are finally obtained by “shooting” down from the
ocean surface to the impedance surface. The combination of
these two techniques allows complicated 3-D features re-
quiring a large set of grid points to be built up from a smaller
set of impedance functions. Furthermore, realigning the up-
per ocean structure with the appropriate grid structure al-
lows for rapidly computing acoustic fields for a dynamic
ocean. The acoustic field is then calculated by either an adia-
batic or a coupled-mode method; in the latter case, the cou-
pling matrices can also be precomputed and stored.

All of the above precomputed quantities are indepen-
dent of source/receiver configuration. The main computa-
tion we wish to emphasize is the fast adiabatic calculation for
new source/receiver positions, which comes from having
precomputed the local normal modes. This allows the acous-
tic field for a changed source/receiver configuration to be
recalculated with minimum effort as opposed to the total
recalculation necessary in any marching algorithm. Speedup
over conventional marching algorithms is then accom-
plished by using this “spreadsheet”-type approach of mani-
pulating wave equation precalculations for adiabatic and
coupled-mode methods. Horizontal refraction will be ad-
dressed in a subsequent paper, although it is included to
some extent in the N X 2D approach discussed in this paper
via the phase accumulation along different radials. It is im-
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portant to note that with this type of approach, it is not
necessary to compute the acoustic field at all points along a
radial if the solution is only wanted at the end point. For
example, if one wants to generate a replica field on a receiver
array for matched-field processing, it is possible to compute
the field on the elements of the array only. The speedup is
particularly evident when the additional mode-coupling or
horizontal refraction computations need not be performed.
In practice, this is true in the majority of cases.

In the next section, we discuss the formulations on
which our computations are based. In the following section,
we present several solutions to a large-scale, complex propa-
gation problem and discuss some of the implications of the
results. The region for this study is a wide geographic area
containing a Gulf Stream environment off the North Ameri-
can continental shelf. Finally, in Sec. III, we point out rel-
evant remaining issues that should prove to be fruitful areas
for further investigation.

. FORMULATION

In this section, we discuss adiabatic and forward cou-
pled normal mode theory on which our calculations are
based. See the Appendix for further discussion on normal
mode calculations using precomputed impedance functions.

A. Adiabatic normal modes

Qur starting point is the Helmholtz equation in three
dimensions,

PV(Vp/p) + (/[P xp) }p= —8(xp2), (1)
where w is the circular frequency of the source, c(x,p,2) is
the ocean sound speed, p is the density, and p(x,p,2) is the

acoustic pressure.
The normal mode solution, when ¢(x,p,2) = ¢(z), is
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The middle two equations represent general impedance
boundary conditions with Z "(k ?) defining the surface con-
dition, Z2(k?) defining the bottom condition, and the
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squared eigenvalues k 2 appearing as arguments. In the fol-
lowing we assume, for simplicity, that the ocean surface is a
free surface, Z 7 = 0. The bottom impedance boundary con-
dition will be used to represent an interface at depth h where
the pressure and the vertical component of the particie ve-
locity are continuous. It is assumed that the ocean is static
below the depth 4. The impedance function formulation is
used (rather than the equivalent continuity conditions) be-
cause the impedance function can be precomputed as dis-
cussed in the Appendix. The derivation of the normalization
condition may be found in Ref. 7.

The generalization of this result to range-dependent
problims is straightforward. The adiabatic mode theory re- -
sult is

i 2 — i Mir)
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The modal sum is over the minimum number M(r) of propa-
gating modes that exist between source and the receiver. The
sum involves the local modes at the source u,, (2,;0) at range
r =0, and at the receiver u,, (z;r) at range r. In practice, the
calculation of modes can be somewhat computationally in-
tensive. In order to minimize the recalculation ot'lmdes, the
environment is subdivided at points r=r;, j=1,..,J,
where J, denotes the number of points where the environ-
ment changa. (In a physical problem, such breaks might be
placed at each range where a new sound-speed measurement
has been made. ) Then one solves for a set of modes at each 7,
and uses linear interpolation to construct modes at ranges
that lie between those r; where the modes have been calculat-
ed.

The N X2D generalization for a three-dimensionally
varying environment is to solve the 3-D problem on N azi-
muthal slices as if each slice of the sound-speed profile and
bathymetry profile were derived from a cylindrically sym-
metric problem. This approach has also been applied in
parabolic-equation modeling.* The normal mode result is

M r,8)
p(rz,8) =— \/— g u,,(2;0,0)u,, (z;1,0)
m= l

Uuk...ls.e)ds 'r__k (r9)r (6)

where the quantities in Eq. (6) also satisfy Eq. (4) parame-
trized with the azimuthal variable 4.

To compute the modes at discrete points, we have fol-
lowed two different gridding schemes—one based on trian-
gular elements, the other on rectangular elements. With the
triangular scheme, the values of u,, (z,r,0) and k,, (r,8) are
constructed by bivariate linear interpolation. The nodes of
the triangles may be arbitrarily located. However, we have
found it convenient to distribute them along isobaths. This
enables extremely complicated bottom profiles to be treated
with a minimum number of sets of modes—there may be
many nodes on a given isobath, which will all be represented
acoustically by the same set of modes (assuming no sound-
speed change). With the rectangular grid we can choose to
hold the environment (and hence the local modes) constant
throughout each rectangle or we can interpolate along the
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propagation path by first interpolating along the sides which
the path crosses. Although the rectangular scheme may re-
quire more, smaller elements, many elements will still be
acoustically identical. The rectangular scheme is convenient
for the mode-coupling computations discussed in the next
section and is also useful in computing the fields from sur-
face generated noise.” We rely on the KRAKEN'®"'? normal
mode program to produce the local modes for each environ-
ment.

B. Outgoing coupled modes

The spatial interpolation of mode functions and hori-
zontal wave numbers, used with the adiabatic approxima-
tion, is done on a mode-for-mode basis. This interpolation
excludes coupling between different modes. Mode coupling
requires a scheme that does not spatially interpolate on a
mode-for-mode basis. The rectangular scheme, which holds
the environment constant in each rectangle, lends'itself to a
straightforward generalization to outgoing stepwise coupled
modes'? for the N X 2D case. The one-way theory assumes
that the solution is outgoing and matches only the pressure
at interfaces between environmental regions. The mode am-
plitudes are initialized at the source and advanced in range
using the horizontal wave numbers for each mode. When a
new environmental region is encountered, the mode-cou-
pling matrix is applied to the vector of mode amplitudes.
Then, the mode amplitudes are advanced with the new hori-
zontal wave numbers. The adiabatic approximation replaces
the coupling matrix with a diagonal matrix, which contains
ratios of square roots of the horizontal wave numbers in ad-
jacent regions.

Consider the two-region problem shown in Fig. 1, where
the environment changes at » = r,. The discrete dependence
of the environment on range will be indicated by a subscript
designating region one or region two. In the case of the mode
functions and the horizontal wave numbers, a different sym-

2=0 >
l
Tran- |
s ¥ sitionI
C1 (Z) Region C2(Z)
2= X |
I
z=h — — — — — = — — —\— —
Impedance | Boundary
z=H

“— Region 1 —®» <—— Region 2 —»

FIG. 1. A two-region propagation problem with a transition region for
smoothing an abrupt environmental change.
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bol will be used for region one and region two. This is in
contrast to the continuous dependence indicated by the no-
tation in the adiabatic case.

The normal mode solution in region one, containing the
source, is

N an’

pra =Y 54,22

n=1 r

(7N

where ¢, are the modes and «,, are the corresponding wave
numbers in region one. The mode excitation s, is determined
by the source depth through the equation

s, = (i/4)J2/ma, e ="y, (z,). (8)
The outgoing stepwise coupled normal mode solution in
region two is

IB (r—ry)
py(rz) = z by (2) e v (9
m=1 r

where ¢, are the modes and 3,, are the corresponding wave
numbers in region two. The coefficients b,, will be deter-
mined by mode matching at r,. It is convenient to express
the field in region one at r, by

i aﬂ¢ﬂ (z)

pi(r,z) = _, (10)
1 1 "Zl \/,T
where
a, =s,e"". (11)

The coefficients a, include the effect of the phase change
between 0 and r,. The mode matching condition at r = r,,
using Egs. (9) and (10), then becomes

N

M
S a4, =Y bnb,(2)

n=1 m=1
The coefficients a, are known; the coefficients b,, are found
as follows. Equation (12) is multiplied by ¢,,/p, (z) and
integrated over the interval [0,4] to give

(12)

2 dm m' Z fm n "7 ( 13)
where
f B (2) P @ (14)
p2(2)
and
h
fon [ MOIACE (1)
0 p2(2)
In matrix—vector notation, Eq. (13) has the form
Db = Fa, (16)

where a = [a,,....ay]", b= [b,,..,b,]", D is an M XM
matrix containing thed,,, .. values, and Fisan M X N matrix
containing thef,, , values. The integration in Eq. (14), need-
ed to compute D, can be avoided when m # m’ by using
d . — ¢ (R)dp,. (h)/dz— ¢, (h)dd, (h)/dz
" p2(h) (B2, —B2) ’

m#m'. (17)

Equation (17) follows from Lagrange’s identity
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that can be derived from the differential equation for the
mode functions. The diagonal elements in D can be obtained

from the normalization condition in Eq. (4).
Equation ( 16) is solved for b to obtain

b=D ~'Fa. (19)

The matrix C = D ~ 'F is the coupling matrix that projects
4, onto ¢, If the ¢, are orthogonal on the interval [0,A],
then D is the identity matrix and the elements in C are ob-
tained from the integral in Eq. (15). If the ¢,, are nearly
orthogonal, then D is near the identity matrix and the matrix
D ~ ' can be approximated easily by

D-'=(I—-E)"'=I+E. (20)

The coupled-mode calculation requires the interval [0,4] be
a significant part of the water column. It does not benefit
from the precalculation of the impedance function to the
extent that the adiabatic calculation does.

An abrupt change in the environment at r, can intro-
duce a sudden change in the field. This is eliminated by
smoothing the field in a transition region shown in Fig. 1.
The field in the region r, <r<r, is computed using

p(rz) = Mpl (rz) + wpz (rz)- (21)

(P’,—J"') (rs_rl)
In this way, the field from region one is partly retained in the
transition region and the field in region two does not take full
effect until rr,.

The above analysis can easily be applied to multiple re-
gions. Suppose a new region is encountered at r, > r,. The
vector b replaces the source excitation vector s. The phase of
b is advanced over the interval from r, to r, defining a new
vector a at r,. Then the process is repeated using Eq. (19) to
generate another vector b for the new region.

(18)

Il. A GULF STREAM EXAMPLE

In order to demonstrate some of the ideas discussed
above, we consider a large-scale, realistic problem with both
bathymetric and oceanographic variations. In Fig. 2 we have
taken bathymetric contours, made from the SYNBAPS data-
base,'* for a 650-km square off the east coast, and have
shaded (in blue) the approximate position of the Gulf
Stream, asit was in March 1983." The positions of two cold-
core eddies, and a small seamount, are alsoshaded. We chose
five historical profiles to represent the sound-speed varia-
tions across the Gulf Stream. In Fig. 3 we show the environ-
ment along a track from the center of the region to the north-
west. These same profiles were used to represent the eddies.
To perform the several computations we have been discuss-
ing, it is necessary to represent this environment in different
ways. We will describe how this was done for each type of
calculation.

An N X 2D adiabatic solution is displayed in Fig. 4. A
50-Hz source is located at position x = 333 km, y = 315 km,
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FIG. 2. Gulf Stream environment used for the examples. The Gulf Stream,
two cold-core eddies, and a small seamount are shaded in blue over the
bathymetric contours. The red line indicates the track of the vertical sound-
speed structure shown in Fig. 3.

and depth z = 100 m. In order to make comparisons with an
N X 2D parabolic-equation (PE) result, we chose to display
all solutions by computing the acoustic field at evenly spaced
points along radials at a fixed depth of 217 m. The pressure
values at a depth of 217 m (a depth where there was a com-
putational grid point for the PE) were saved along 65 radials
every 0.25 km (the PE computational range step was 25 m).
The computational radials spanned 360 deg, and were
spaced 5.625 deg apart. The magnitude-squared pressure
values were smoothed with a 5-km Gaussian-weighted win-
dow along each radial, converted to transmission loss (TL),
and then interpolated onto a rectangular 1- X 1-km grid over
the entire 650- X 650-km region. These values were then
plotted using a 12-level color scale representing 80 to 98 dB

10I00
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Depth (m)

B

090400

-40 0 40 80 120 160 200 240

Range (iam)
FIG. 3. Sound-speed profiles and bathymetry along the track shown in red
on Fig. 2. The dels indicate the ranges of the profiles from the endpoint near
the center of the region and each nabla is positioned over the 1500-m/s point
of the profile.
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FIG. 4. The N % 2D adiabatic mode result at a depth of 217 m computed
with the triangular grid shown in Fig. 5.

with red 80 dB or less, and black 98 dB or more; each color
level spans 1.5 dB. The resulting 3-D acoustic fields provide
a type of “acoustic image” of the environment.

In Fig. 4, the outlines of the Gulf Stream, the two eddies,
and the small seamount are overlaid on the plot of the data.
This is our initial calculation and is made using a triangular
grid of approximately 450 points and 830 triangles as shown
in Fig. 5. The grid was constructed along the contours seen
in Fig. 2. The important point, however, is that, even though
this is a rather complex 3-D environment, there were only 54
distinct local environments, and therefore only 54 sets of
modes to compute and store for subsequent calculations. If
the shallow areas (below, say, 3000 m) are not included,
only about ten impedance functions are needed, and when
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FIG. 5. Triangular discretization of the Gulf Stream environment shown in
Fig. 2.
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FIG. 6. Transmission loss in the vertical plane extending from the source to
the northwest.

they are matched with the five profiles, about 40 distinct
mode files result.

Since the region to the southeast is reasonably flat and
has no oceanographic features, this part of Fig. 4 has a cylin-
drical symmetry as one would expect. The eddies break this
symmetry, and the effect of the Gulf Stream is to produce
generally greater loss on the far side. This does not mean that
the Gulf Stream is acting like an acoustic *‘wall”’; the energy
is being redistributed to other depths or being absorbed by
the bottom.

Figure 6 is a color contour of the transmission loss in the
vertical plane extending from the source to the northwest.

In order to compute an N X 2D mode-coupling result,
we need an environment that is constant over small rectan-
gular patches. The mode coupling will then occur at the
transition from one patch to the next. The entire region was
divided into 10- X 10-km squares. Each square was assigned
a set of local modes by finding the node on the triangular grid
that was closest to the center of the square—the set of modes
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FIG. 7. The N X 2D adiabatic mode result at a depth of 217 m computed
with a rectangular discretization of the Gulf Stream environment shown in
Fig. 2. Compare to the triangular result in Fig. 4 and the coupled-mode
result in Fig 8.
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FIG.8. The N % 2D coupled-mode result at a depth of 217 m computed with
rectangular discretization of the Gulf Stream environment shown in Fig. 2.
Compare to the adiabatic result in Fig. 7.

corresponding to that node was assigned to that square.

Because the environment for which the solution is being
computed is not exactly the same as it was for Fig. 4, we
recomputed the adiabatic result. This result is shown in Fig.
7. That is, Figs. 4 and 7 are both N X 2D adiabatic calcula-
tions, but they used different views of the discrete environ-
mental data of Fig. 2.

To do the mode-coupling calculation, it was necessary
to consider all combinations of pairs of adjacent environ-
ments and compute and store the coupling matrices of Eq.
(15) (the mode functions were essentially orthogonal over
the depth interval used in the calculation ). Since the shallow
region to the northwest was relatively uninteresting, we de-
cided to reduce the range of the computation, thereby avoid-
ing the necessity of computing and storing the coupling ma-
trices relevant only to that region. In total, we ended up with
96 pairs of environments. This requires 192 coupling matri-
ces. However, in this problem we did not use any density
changes so that the coupling matrix for moving from envi-
ronment “A” to environment “B” is the transpose of the
matrix for moving from environment “B” to environment
“A” [see Eq. (15)]. Each matrix required about 30 min of
computation time on a VAX 11/785. The final mode-cou-
pling solution in Fig. 8 required about 90 min of computa-
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FIG. 10. An adiabatic mode result computed by dividing the region into
0.5-km squares and computing the TL to the center of each square.

tion time, surprisingly close to the 50 min for the (longer-
range) adiabatic computation in Fig. 4.

The structure of the coupling matrices is interesting. In
Fig. 9(a) we have color coded the entries for the matrix,
which couples the modes from a depth of 3200 m to a depth
of 3400 m using a constant sound-speed profile (the cold-
water profile at the end of the track in Fig. 3). Figure 9(b)
displays the matrix that couples two of the Gulf Stream pro-
files (the third and fourth profiles on the track in Fig. 4) ata
depth of 4200 m. Both matrices of Fig. 9 are banded, indicat-
ing that the computation could be made more efficient by
using only a band centered on the diagonal. Also, this re-
duces the computing and storage requirements of the matri-
ces themselves.

Figure 9(a) and (b) is different in that, as you move
away from the main diagonal, the values monotonically de-
crease in Fig. 9(a) while, in Fig. 9(b), the structure is more
complex. Bathymetry changes affect the higher-order modes
only, whereas the oceanographic effects are distributed over
all modes. As noted above, the adiabatic approximation ef-
fectively replaces the coupling matrices with diagonal matri-
ces. Figure 9(a) shows a matrix that is almost diagonal,
especially in the lower-order modes. Figure 9(b), on the oth-
er hand, indicates that the coupling between these two pro-
files may be too complex for the adiabatic approximation.

l_ 1'0

FIG. 9. Mode-coupling matrix for (a) a change
in depth from 3200 to 3400 m using the cold-
water profile at the end of the track in Fig. 3,
and (b) two Gulf Stream profiles (the third and
fourth profiles on the track in Fig. 3) at a depth

of 4200 m.
-0.01
92
RELATIVE
SIZE
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FIG. 11. The N % 2Dsplit-step parabolic-equation solution at adepth of 217
m computed by inputting the bathymetry and sound speeds at the nodes of
Fig. 5.

Thus it is possible to precompute these matrices, and when
the coupling is complex—include the coupling; otherwise,
use the adiabatic approximation.

We wish to show an additional adiabatic computation.
We divided the entire region into 0.5 < 0.5-km squares in the
same manner described above. Instead of computing along
radials, we computed the TL to the center of each square.
This result is shown in Fig. 10 and is significant in that, at
least to a resolution of 0.5 km, no features of the environment
are “missed” in the calculation. Again, with the adiabatic
normal mode approach, the field can be computed directly at
the desired receiver points without marching the solution
through the environment.

In Fig. 11 we present an N X 2D split-step PE calcula-
tion'® for this problem. It happens that this implementation
inputs the environmental description on a triangular grid.
We used the same triangular grid of Fig. 5; however, now it is
sound-speed data that is input for each node, and there is an
internal interpolation scheme to produce index of refraction
values on the computational grid, which is cylindrical. Thus,
although these two computer models use essentially the
same input data, it is difficult to attribute differences in the
solutions they produce to differences in theory or differences
in numerical implementation. Figure 12 shows the differ-
ence between (a) the PE computation and the adiabatic re-
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sult and (b) the PE computation and the coupled-mode re-
sult, and we note that the coupled-mode and PE solutions
are very similar. The larger differences seen in the circular
arcs to the southeast of the source result from a range shift in
the convergence zones, rather than differences in intensity
levels. At any rate, the difference between reality and any of
these large-area solutions is probably dominated by our in-
ability to obtain detailed synoptic 3-D information about the
ocean and sediments. We also computed the full 3-D PE
solution*'® and obtained essentially identical (within 0.15
dB) results as those shown in Fig. 11. However, the angular
spacing used (5.625 deg) could have been too large to obtain
improved results.

. SUMMARY AND CONCLUSIONS

We have described approaches to the problem of com-
puting acoustic fields in three-dimensional ocean environ-
ments that involve computing and storing local modal infor-
mation throughout a (large) region. Propagation from any
source position to any receiver position can then be comput-
ed very rapidly.

Our standard or baseline solution makes use of a trian-
gular patchwork with modes defined at the corners of the
triangles, and invokes the V X 2D approach in which the ray
paths are straight lines when viewed in plan. The mode
structure itself is computed rapidly with the use of precalcu-
lated impedance functions (see the Appendix) that are ob-
tained by taking advantage of the stability of the lower part
of the deep ocean. Furthermore, adiabatic mode theory is .
used to compute the acoustic field along a radial.

Extremely complicated 3-D problems can be treated in
this fashion with relatively modest computer effort. For in-
stance, in the Gulf Stream example we showed an oceano-
graphically active environment of approximately 650 km on
a side. The 450 nodes used to define the environment re-
quired only 54 distinct environmental data sets and sets of
local modes. We have also shown that outgoing stepwise
coupled-mode solutions can be generated much more rapid-
ly than was previously believed with a rectangular grid of
precalculated modes and mode-coupling matrices.

The capability to compute 3-D acoustic fields in com-
plex environments and thereby produce “acoustic images”
poses additional challenges concerning realistic accuracy

0 FIG. 12. Differences between (a) the PE re-
sult and the adiabatic result and (b) the PE
result and the coupled-mode result.
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criteria. If we use the conventional criteria (taken from com-
puting standard 2-D transmission loss curves) in a 3-D com-
putation, we are confronted with acquiring an inordinate
amount of environmental input data. Furthermore, compar-
ing conventional transmission loss curves is an exercise in
comparing numbers, whereas images depict physical phe-
nomenon. Missing a shift of a convergence zone by 1 kmina
transmission loss curve may result in a 15-dB error that does
not appear as serious in a 3-D construction of the acoustic
field that displays the phenomenon over a large area. The 3-
D picture of the acoustic field taken with the uncertainty
normally associated with real environmental data seems to
require some relaxation of the accuracy one normally seeks
in computing transmission loss curves. Certainly, it calls
into question the value of the additional information one
may gain for substantial increases in computation costs (as
when using mode coupling).

A remaining issue is that of the need for mode coupling,
i.e., the shortcomings of the adiabatic approximation. It is
not clear whether horizontal refraction or mode coupling is
more important. One can, however, construct cases where
horizontal refraction is nonexistent and mode coupling im-
portant—for instance, a seamount in a 2-D model can cause
significant mode coupling and the corresponding azimuthal-
ly symmetric problem has no horizontal refraction. A subse-
quent paper will deal with horizontal refraction but we note
here that the N X 2D computation contains horizontal re-
fraction via the different phase accumulation along individ-
ual radials. This can be thought of as being the lowest-order
inclusion of cross-range variability in the same sense that the
PE equation includes range dependence although originally
derived by considering only a stratified medium.

APPENDIX: PRECALCULATION OF IMPEDANCE
SURFACES

In this Appendix we show how to reduce the redun-
dancy inherent in the mode computations. Thus the static
part of the problem, which includes both the ocean bottom
and a significant portion of the water column, is replaced by
an impedance function. In a typical deep water problem,
approximately 90% of the water column can be removed by
precalculation. This impedance surface then forms the lower
boundary condition for a much reduced modal computa-
tion.

Suppose that the ultimate bottom boundary condition
for the differential equation in Eq. (4) is a rigid bottom at
some great depth z= H as shown in Fig. 1 or a radiation
condition with H — « . The wave numbers (eigenvalues) can
be found by shooting down from the surface and up from H
and choosing the wave number to satisfy the continuity con-
ditions at z = A.

Let 4 and v be solutions of the differential equation in
Eq. (4) that satisfy the surface boundary condition atz =0
and the bottom boundary condition at z = H, respectively.
The continuity conditions at z = A are

u(h) = v(h), (Al)
u'(M/pCh )=v(h)/ph ™). (A2)
The solution v can always be normalized to satisfy one of the
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continuity conditions independent of the wave number. If
the wave number is chosen such that (provided zeros and
infinities are interpreted corvectly)

u(h)/[u' (Mph Y] =v(a)/[v'(pth —)], (A3)

then the other continuity condition will also be satisfied.
This is equivalent to

u(h) — [Vpth ~)Z8(kHu'(h) =0, (A4)
where the impedance function is given by
Z8(k?) =v(h)p(h * )/ (h). (A5)

It is not even necessary to know the appropriate normaliza-
tion for v.

The impedance functic.: in Eq. (A5) depends only on
the static part of the environment below z = A. From a prac-
tical point of view the impedance function is computed at a
set of points, k; = k,,,, + /5%. The number of k points and
the interval they cover are determined using the same con-
siderations as for a spectral integral code.'” In subsequent
calculations, the impedance at an arbitrary k value is ob-
tained by polynomial interpolation.

Here, we illustrate the impedance function method for
the two profiles in Fig. Al. The second profile can be
thought of as coming from a change in the upper part of the
ocean, for instance, an eddy moving over the same location.
The two profiles are identical below 1500 m. The solid line in
Fig. A2(a) is the impedance function evaluated at a depth of
1500 m obtained by shooting up from the bottom through
the lower 3500 m of the water column using the profile in
Fig. Al(a). The dashed line is the impedance function at the
same 1500-m depth obtained by shooting down from the
ocean surface. The intersection of the two functions occurs
at the eigenvalues of the total problem. The locations of the
eigenvalues obtained from a straightforward eigenvalue
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FIG. Al. Two profiles used to demonstrate the use of the impedance sur-
face.
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FIG. A2. Impedance functions for the profiles in Fig. Al. The solid line is
the impedance function evaluated at a depth of 1500 m obtained by shooting
up from the bottom. The dashed line is the impedance function at 1500 m
obtained by shooting down from the surface using (a) the profile in Fig.
Al(a) and (b) the profile in Fig. A1(b). The locations of the eigenvalues
obtained from a straightforward eigenvalue search are indicated by the
wsergn

search is indicated by the “xX’s.” Now, changing to the pro-
file indicated in Fig. A1(b) requires only the upper compu-
tation to be redone for the total eigenvalue search. This new
computation is shown in Fig. A2(b), where the solid line is
identical to that of Fig. A2(a). Hence, with the solid line
taken as the “precalculated” stable part of the problem, we
have reduced the eigenvalue search to the simpler, shallower
problem. In this case there was a reduction of 70% in com-
putational effort over the full mode problem. Typically, the
reduction factor is more than 90% for deep water problems.

When elastic layers are present, we propagate the im-
pedance coeflicients using the compound matrix method as
described in Ref. 11. In addition, we observe that the tech-
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nique may be applied to static parts of the problem even if
such layers are sandwiched between dynamic layers. In this
case, one computes a pair of linearly independent solutions
and from them a propagator matrix for the static layer.

The procedure is applicable to spectral integral codes, in
fact with less effort, since much of the care taken in comput-
ing the impedance coefficients stems from the need to inter-
face with efficient eigenvalue finding techniques. Spectral
integral codes have no analogous requirement. Finally, we
observe that in either modal or spectral integral implementa-
tions, the impedance sampling need not be a regular mesh
and significant gains might be obtained by adaptively sam-
pling the impedance function.
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