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The method of Gaussian beam tracing has recently received a great deal of attention in the
setsmological community. In comparison to standard ray tracing, the method has the
advantage of being free of certain ray-tracing artifacts such as perfect shadows and infinitely
high energy at caustics. It also obviates the need for eigenray computations. The technique is
especially attractive for high-frequency, range-dependent problems where normat mode, FFP,
or parabolic models are not practical alternatives. The Gaussian beam method associates with
each ray a beam with a Gaussian intensity profile normal to the ray. The beamwidth and
curvature are governed by an additional pair of differential equations, which are integrated
along with the usual ray equations to compute the beam field in the vicinity of the central ray
of the beam. We have adapted the beam-tracing method to the typical ocean acoustic problem
of a point source in a cylindrically symmetric waveguide with depth-dependent sound speed.
We present an overview of the method and a comparison of results obtained by conventional

ray-tracing, beam-tracing, and full-wave theories. These results suggest that beam tracing is

markedly superior to conventional ray tracing,

PACS numbers: 43.30.Cq, 43.30.Dr

INTRODUCTION

Beam tracing has recently received a great deal of atten-
tion for solving problems in wave propagation.'’ In partic-
ular, the seismological literature includes a large number of
references. Basically, the method consists of approximating
a given source by a fan of beams and tracing the propagation
of these beams through the medium. The quantities of inter-
est, e.g., acoustic pressure or particle displacement, are then
computed at a specified location by summing the contribu-
tions of each of the individual beams.

The behavier of individual beams is a classical problem
in physics. However, the recent literature is concerned with
the propagation of waves from peint or line sources and a fan
of bounded beams is simply used to approximate the source.
Thus although bounded beams occur quite naturally in
acoustics the technique is generally applicable to sources
that are not “beamlike.” Indeed, for our test problems we
consider the standard ccean acoustics problem of a point
source in cylindrical coordinates.

Less formal beam theories have been applied previously
to acean acoustic problems. Perhaps the simplest procedure
involves a user specified and range-independent beamwidth
(interpreted as representing the diffusivity of a ray due to
statistical fluctuations). This kind of procedure has been im-
plemented in several ray models. More recently, Bucker de-
veloped a beam theory based on spreading laws in a homo-
geneous medium, which allowed the beams to evolve as arc
length increased. The present theory employs differential
equations that are integrated along with the usual ray equa-
tions and that govern the evolution of both the beam curva-
ture and width. Initial results of this theory and comparisons
with Bucker’s simple Gaussian beam theory were presented
in Ref. 23.
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The standard ray-tracing method produces certain arti-
facts, e.g., perfect shadows and caustics. Extended ray theor-
ies have been developed in order to correct for these difficul-
ties; however, these algorithms tend to be awkward to
implement. In contrast, beam tracing requires only simple
modifications to standard ray-tracing codes and the solu-
tions so generated are free of singularities at caustics and
abrupt discontinuities at shadow zone boundaries. In addi-
tion, the beam approach obviates the need for time-consum-
ing and failure-prone eigenray computations.

In the following sections we review the beam-tracing
technique and discuss the modifications required to apply it
to ocean acoustic problems in cylindrical coordinates. We
describe the practical aspects of its implementation and
compare the performance of the method to conventional ray
tracing for several different scenarios,

L. REVIEW OF THE GAUSSIAN BEAM EQUATIONS

A readable introduction to Gaussian beam tracing along
with an historical overview including references to the earli-
est works is provided by Cerveny et ol.'? Basically, the con-
struction begins with the integration of the usual ray equa-
tions to obtain the central ray of the beam. Beams are then
constructed about the rays by integrating a pair of auxiliary
equations, which govern the evolution of the beam in terms
of the beamwidth and curvature as a function of arc length.
Theresulting pressure field describes a beam, in that the field
falls off in a Gaussian fashion as a function of normal dis-
tance from the central ray of the beam.

The central ray of the beam obeys the standard ray equa-
tions. We consider a cylindrical coordinate system with »
denoting the horizontal range and z the depth coordinate.
The ray equations then read
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where r = r(s), the [7(5),z(s)] coordinate of the ray as a
function of the arc length 5, and c(r,z) is the sound speed.
These equations may be immediately reduced to first-order
form by introducing the auxiliary variables (p,{). This is
convenient since numerical integrators for initial value prob-
lems are often stated for first-order systems. In addition,
[p(s),£(s)] is proportional to the local tangent vector,
which turns out to be a useful quantity. In first-order form,
the ray equations then read

%=cp(5‘). (1a)
d 1 de

—d%= h_;ar’ (1)
dz 1
$=cg‘(s), {lc)
I/ 1 de

:é,: -5 (1d)

The beam curvature and width are derived from the
quantities p(s) and ¢(s), which are obtained by integrating
an additional pair of ordinary differential equations along
the central ray. These additional equations are derived by
solving a parabolic equation in the neighborhood of each
ray. The details of this derivation are given in Appendix A
and we present only the final result here:

99 _ c(s)p(s), {2a)
ds

dp Con

4 = . 2b
ds 20 q(s) (2b)

Here, ¢,,, denotes the second normal derivative of the sound
speed ¢(r,z) and may be computed as

dr\? (dr)(dz) (dz)2
= ar 30 | ZLY [ 82 4z
Ernm C"(dn)+ e\ ) \an ) T =\
=cn(N(r) )2 + ZCE(N(,.) )(N(z)) + czz(N(l) )2 4
3

where (N,,,, N, ) is a unit normal given by

(NN ) = (%» _%) =e(S)[5(s), —pls)].

(4)
The beam is then defined by

uis,n) =AJe(s)/Trg(s)]
X exp( — iw{r(s) + 0.5[p(s)/q(s) 1n*}),
(5)

where A is an arbitrary constant, # is the normal distance
from the central ray, and e is the angular frequency of the
source. We observe that this form differs from the result of

Cerveny et al.'* by a factor of /7 that represents the effect of
cylindrical spreading.

The term 7(s) in (5) is the phase delay (travel time)
that satisfies
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In order for Eq. (5) to be a complete description of the
beam field, we must specify the intended branch of the
square root. The branch is chosen so that the resulting phase
varies continuously with the arc length s. Thus the square
root is defined by

Vx = (= 1™ sqrt(x) , (N

where sqrt(x) now denotes the principal value, i.e., the
branch of the square root that yields a resulting phase in
{ — 7/2,7#/2). The function m(s) is the integer number giv-
ing the number of times ¢(5) /[ rg(s) ] [or equivalently ¢(s)]
has crossed the negative imaginary axis and is easily comput-
ed during the integration of the p—q equations.

(6)

il. INITIAL CONDITIONS

The initial conditions for the system of four ordinary
differential equations governing the central ray of the beam
are

[7(0),2(0)] = (r..2, ),
[£(0),£(0)] = (cos @, sin @) /c(0) ,

where (r,.z,) denotes the source location and a is a pre-
scribed takeoff angle. We measure angles with respect to the
horizontal r axis and use positive angles for downgoing rays
so that  is a declination angle.

In order to discuss the p-g initial conditions, it is con-
venient to relate the p—g functions to a beam radius (half-
width) L(s),and beam curvature K (s}. These functions are
defined by

Lisy =+ = 2w Im[p(s}/q(s)1},
K(s) = —c(s)Re[p(s)/q(5)] .

Plainly, the beam radius L{s) is the normal distance
from the central ray at which the beam amplitude is 1/¢ of its
maximum value. Furthermore, if the wave fronts are curved,
then traveling normal to the central ray corresponds to tra-
versing curves of constant phase. The rate of change of phase
relates directly to the local curvature and provides the basis
for the interpretation of K(s) as curvature.”®

At present there is no consensus on the proper choice of
2(0) and ¢(0), or equivalently, L(0) and K(0). Cerveny et
al.,'? chose initial conditions so as to minimize the beam-
width at the receiver. The guiding principle for this choice is
that the computation time may be reduced if the number of
contributing beams is minimized. One complication of this
approach is that if the beams are individually made to have
minimum width, then each beam will in general have a dif-
ferent initial beam constant and the expansion of a point
source into beams must be re-examined. (Muller?' has ad-
dressed this issue and argued that Cerveny’s et al.,"* original
expansion procedure is not significantly degraded when the
beam parameter is nonconstant. )

. Numerous other choices have been considered, such as
minimizing beamwidth at the source or the midpoint, be-
tween source and receiver; Madariaga®® argues that initial

(8)

(9)
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conditions should not differ too much from those that corre-
spond to WKB theory.

We have been able to obtain good results, for the cases
considered so far, by assuming that the beam is initially flat
(no curvature} and choosing the initial beamwidth so that
the beams are “space filling” in the farfield. In order to ob-
tain an initially fiat beam, ¢(0) is set to an imaginary con-
stant of magnitude ¢:

p(0) =1, (10)

Note that since p cccurs in Eq. (ZS only as the quotient
(p/q), we can choose p(0) = 1 without loss of generality.
Then referring to Eq, (9), we see that purely real € is equiva-
lent to zero curvature beams.

We next select € to obtain a “space-filling” beam in the
farfield. Consider the canonical problem of a beam in a ho-
mogeneous medium with constant sound speed ¢, equal to
that at the source location in the original problem. In a ho-
mogeneous medium the p—q equations are readily solved to
yield

g(0) = ie.

P& =1, g(s) =ces+i€ (11)

or

p(5)/q(s) = (cos — i€)/ (¢} + €7) . (123

Therefore, the beam defined by Eq. (5) falls off with n
(the normal distance from the central ray) according to

exp[ — 0.5wen’/(cjs* + €)] . (13)
Now, if a fan of ¥ beams is traced over an angular spread
(ay,a,), then each beam ‘*occupies” an angle of
da = (a; — a,)/(N¥N —1) and the normal distance to the
central ray of a neighboring beam is given by n = séa. For
reasonable coverage at long ranges (¢,5» ¢), we then choose
€ such that the beam influence is reduced by 1/e at the loca-
tion of its two neighboring beams. Therefore,

€= 2ct/[w(da)?], (14)
which together with Eq. (10} completes the specification of
the p—¢ initial conditions.

In our test problems these initial conditions have always
yielded better results than ray tracing; however, we find that
still better results may be obtained by adjusting the initial
conditions. Ultimately, we expect that better guidelines will
emerge for choosing the p—g initial conditions.

Ill. EXPANSION OF A POINT SOURCE INTQ BEAMS

For sources that natyralty give rise to a beam solution, a
single beam may be used to approximate the source and the
expansion is immediate. In many cases, however, the sources
are not “beamlike” and the issue of how to approximate the
source as a superpasition of beams must be addressed. One
approach is to match the high-frequency asymptotic field of
the Gaussian beam representation to the exact solution in a
homogeneous medium. Thus, following Cerveny er al.,'> we
seek an expansion of ihe field as an integral over the beam
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takeoff angle:

u(ay) =fA(a) £(s)
rg(s)
Xexpl — ia)[‘r +0.5 (‘E)nz]]da ,
q

where a, denotes the angle to the receiver. In a homogen-
eous medium, formulas for p(s), g(s), and 7(s) may all be
obtained easily. The analysis of Cerveny er al.'? carries
through directly, with appropriate sign changes and the fac-
tor of 1/y/r carried through. The saddle point method yields
the high-frequency asymptotic approximation:

u(ay) ~A(ag)eo v2r/[¢(0}wrR |

Xexp{ — jiwR /¢y ~ im/4)

(15)

(16)

where R is the slant range to the receiver and r is the (r,z)
cylindrical coordinate of the receiver. The quantity g(0) de-
notes the initial value of g and is given by Eq. (10).

It is convenient to convert the entire expression to (R,z)
coordinates using 7 = R cos ;. Then one may match to the
exact solution for a point source in three dimensions:

u(R) = exp( — iwR /c,) /R . (17)
Evidently the forms will match if
A(a) = {(1/eyexp(in/4) Jg(Mw cosa/(2r), (18)

and so the beam field is constructed as

| .
e = 3 ou (el §) | [ 205
X c(s) cxpi - l'a)[‘r + 0.5(}—’) nz]] ,
\/ rg(s) g

(19)
where the integral sign has been replaced by a discrete approxi-
mation to the integral. The final result differs from the expan-

sion of a line source'? by a factor of 1/y/r in range, cos @ angular
weighting, and by a multiplicative constant.

IV. REFLECTION AND TRANSMISSION AT INTERFACES

Cerveny and Psencik!” provide complete equations for
beam transmission/reflection through a first-order curved
acoustic interface. The transmission/reflection equations are
derived by matching the phase of the incident and transmitted
beams at the interface. (Felsen'® has argued that the reflection
and transmission coefficients of Cerveny and Psencik!” should
empioy the complex angle of incidence of an associated com-
plex ray rather than the real angle of incidence of the central ray
of the beam. This is an effect that presumably would be includ-
ed if the matching had been carried through to the amplitude
equation. )

In our test problems, we consider range-independent prob-
lems and the only interface is the ocean surface. This is a weak
or second-order interface in that the sound speed is continuous,
but its higher-order derivatives are not. The reflection formulas
at the interface may then be simplified considerably and one
obtains

r‘ = r, p' :p N (208)
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r'=z ('=-¢, (20b)
P=p+eN, ¢ =4, (20c)
r=7— (T/e), M\\ 2, (20d)

{ t.h
where 42w
N=2[c (2 —p*/5) — 2176 sz0 -
Here, primes refer to the variable values after reflecting from
the interface. Equations (20a) and (20b) assert that the beam

reflects from the surface at the same position it enters and with
the same angle. In addition, Egs. (20c) imply

P/q =p/g+N, (21)

where N is real. Since the imaginary part of p/g governs the
beamwidth and the real part the beam curvature, one con-
cludes that the beam undergoes no change in width but does
change its curvature. Finally, Eq. (20d) accounts for the phase
shift during reflection.

A shortcoming of Egs. (20) is that they are not valid near
grazing incidence. One finds that the contributions of “adja-
cent” beams to a particular receiver are out of phase for beams
near grazing incidence and that the resulting pressure field is
incorrect. In the range-independent problems that we consider
here, we have found empirically that the following formula
corrects for this deficiency:

N=4(c,/e)p*/E |, o - (22)

A more complete treatment of reflected beams near grazing
incidence is deferred to a future paper.

V. PRACTICAL COMPUTATIONAL ASPECTS

The tracing of an individual beam involves the classical
problem of integrating a set of coupled nonlinear ordinary dif-
ferential equations. In wave propagation problems the methods
employed may be divided into two classes—conventional inte-
gration methods and patch methods. In the first class we in-
clude Runge-Kutta and multistep methods, which are part of
standard packages. In patch methods, the domain of the prob-
lem is divided into subdomains in which the material properties
are approximated by simple analytical forms. The forms are
chosen so that the differential equations may be solved analyti-
cally within each patch or subdomain. In two (three) dimen-
sions one may divide the domain into triangles {tetrahedra)
with linearly varying sound speed or square index of refraction.
Within these subdomains exact solutions for the rays are ob-
tained as parabolas or arcs of circles depending on the particu-
lar approximation.

The different approaches manifest different features or
problems. In the final analysis the difference between the quali-
ty of individual codes probably depends more on the craft of the
programmer than on the class of solver used and at this time,
there is no clear choice between the two approaches. Happily,
the Gaussian beam approach is easily imbedded in either type
of code. In order to employ patch methods, it is necessary to
construct analytic solutions for the beam equations. The two
most popular cases employ linear approximations to c(r,z) or
n?(rz), where n is the index of refraction. The equations for the
central ray of the beam are just the usual ray equations and
yield ray paths that are circles and parabolas, respectively. In
order to complete the beam solution it is also necessary to solve

1352 J. Acoust. Soc. Am., Vo!. 82, No. 4, October 1887

the p—¢ equations analytically. The c-linear case is trivially inte-
grable and has been treated in detail elsewhere.?' The #*-linear
case seems to have been preferred in ocean acoustics problems
and analytic solutions to the p—¢ equations may also be ob-
tained for this case. The relevant formulas are presented in
Appendix B.

For test purposes we have employed the “improved poly-
gon method,” ** which for a system y' = f{x,y) yields the dis-
cretization

yi+ 172y =y{) + (A /2 [x(y ()],
ylu+ 1D =y + A [xCG+ 1/2)p0(+ 1/2)],

where A is the step length and x(7), (/) denotes the values of x
and y obtained at the ith step. In a production code, a more
sophisticated integrator such as Runge-Kutta—Fehlberg is
probably more suitable.

We trace a fan of these beams using an angular spread and
total arc length for each beam so as to obtain all beams that
might contribute to a specified receiver point. The treatment of
the next step depends on the kind of computation desired
(complete field, just along a fixed depth, or range, etc.) and on
the method of integration. In cur case, we are interested in
computing propagation loss along a receiver track at a fixed
depth 2, and extending over a series of discrete range coordi-
nates, (r, /= 1,..). A beam is traced and at each step we
compute the intercept of ray normal and the receiver line. We
then identify the receivers lying between successive ray normal
intercepts and compute the contribution of the beam field at
each receiver by interpolation.

The interpolation of the beam solution between tabulated
points on the beamn may be performed in a variety of ways.
Cerveny et al.'? construct a family of normals to the line seg-
ment connecting two adjacent points on the beam. They then
determine the particular normal that passes through the receiv-
er point and use linear interpolation to compute the beam influ-
ence. A drawback of this approach is that it leaves wedge-
shaped regions extending from each of the tabulated points in
which no normal connects a receiver and the polygon train of
the centrat ray.

We have employed an alternative approach, which makes
use of the fact that (N,,, N, ) =c(s;) [{£(s;),0(5;)] is the
beam normal at each node during the integration process.
Then, the r coordinate of the point where the normal intercepts
the receiver line is given by

Fine = 7(85) + [2, —2(s) 1N /Ny - (24)
By construction, the receiver point is bracketed by the intercept
points of two adjacent normals, which we denote by », and #,,.

Therefore, we may define the proportional distance of the re-
ceiver point along this segment by

(23)

W= (F — 1)/ (ry —1a) (25)

and an arbitrary quantity f on the beam is obtained by linear
interpolation, f = (1 — w)f{a) + wf(h). Linear interpolation
is used for the quantities (s}, p(s), g(s), and 7(s), which are
required to construct the beam field at the receiver.
Computation time may be reduced by windowing the
beam, i.e., only computing the beamn influence when the beam
is close to a receiver. We currently use a criterion that allows a
beam to contribute if it is within five beam radii of the receiver.
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This windowing was demonstrated to have no visible effect on
the transmission loss plots.

VI. APPLICATIONS

The test cases considered in this section and the various
input pararneters are summarized in Table I. As a first example
of the method, we have treated a strong downward refracting
profile first considered by Pedersen and Gordon.* In order to
avoid confusion, we have retained the original nonmetric units.
The sound speed is an n*-linear range-independent form:

c(z) =coAN 1 — 2yz/cy, (26)
where
co = 1677.3319 yards/s, y= — 1.2286762/s .

A plot of this profile is shown in Fig. 1. Following Pedersen and
Gordon,™ propagation loss is calculated for a 2000-Hz source
frequency and for two source/receiver combinations. In the
first case both the source and receiver are located at a depth of
66.7 yards. For convenience, we reproduce the ray trace for this
scenario in Fig. 2. Evidently, there is a shadow zone that begins
at a range of approximately 800 yards and is manifest in the
resulting ray transmission loss calculations shown in Fig. 3(a).

A reference solution for this problem is readily obtained
from the plane-wave spectral integral. The result, shown in Fig.
3(b), was obtained by the Kutschale®'-Wales “fast field pro-
gram,” which employs the Airy function solution for n2-linear
layers. For this particular problem, which is composed of a
single n’-linear half-space, one layer suffices. Not surprisingly,

TABLE 1. Summary of test problems and input parameters.

Downward refracting scenario:

c(z) = co/V {1 — 2yz/ey)

¢y = 1677.3319 yards/s, y= — 1.2286762/s

Shallow source case:

Source depth = 66.7 yards, receiver depth = 66.7 yards
Frequency = 2000.0 Hz

101 beams distributed over { — 25,0, 0.0) degrees

200 integration steps of 10 yards per beam

501 transmission loss points over (500.0, 1000.0) yards
CPU time == 100 s

Deep source case:

Source depth = 1000.0 yards, receiver depth = 800.0 yards
Frequency = 2000.0 Hz

401 beams distributed over { — 60.0, — 20.0) degrees

281 transmission loss points over (3100.0, 3170.0) yards
CPU time = 330 s

Munk profile:

c(z) = 1500{1.0 4+ 0.00737[x — 1 + exp( — x)]}, for z<5000 m,
c(z) = ¢(5000), for z> 5000 m,
x = 2(z — 1300)/1300.

Source depth = 1000.0 m, receiver depth = 800.0 m
Frequency = 50.0 Hz

88 beams distributed over ( — 14.66, 14.66) degrees
800 integration steps of 200 m per beam

800 transmission loss points over (0.25, 100 000.0) m
CPU time = 130s
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FIG. 1. Sound-speed profile for downward refracting case.

the full-wave solution has a much less abrupt transition at the
shadow zone boundary. The beam trace results shown in Fig,
3(c) are much more faithful to the reference solution replicat-
ing the smooth transition to the shadow zone.

In the second case the source is located at a depth of 1000
yards and a receiver track is located at a depth of 800 yards. A
ray trace is shown in Fig. 4. As discussed by Pedersen and
Gordon,™ this track passes through three successive zones as
range increases. In the nearfield the interference pattern is due
to the interaction of a surface reflected and a direct refracted
arrival. At a range of approximately 3130 yards the surface
reflected ray is turned before reaching the surface and the inter-
ference is between two direct arrivals. Finally, at a distance of
approximately 3160 yards a caustic is found and beyond that a
shadow zone where ray theory predicts zero amplitude. For
comparison, we reproduce the conventional ray-trace propaga-
tion loss curve for this scenario [Fig. 5(a)]. The transitions
between each of these zones are clearly visible in this plot.
Again the reference (spectral integral) solution in Fig. S(b)
shows energy diffracted into the shadow region and generally
has less sharp transitions than the ray-trace solution,

In Fig. 5(c) we display the Gaussian beam propagation
loss curve, which again is in extremely good agreement with the
exact solution. We note that the correct caustic phase shift has

50

100

Depth (yd)

150

200
o 0.2 0.4 0.6 0.8 1 1.2
Range {kyd)

FIG. 2. Ray trace for shallow source (66.7 yards) downward-refracting
profile.
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FIG. 3. (a) Ray theory propagation loss for shallow source. (b} FFP prop-
agation loss for shallow source. {c) Gaussian beam-trace propagation loss
for shallow scurce.

been included automatically by the beam-trace code (neglect-
ing the phase shift causes an immediately visible shift in the
inteference pattern). This phase shift is often neglected in gen-
eral ray-trace codes since it requires the location of caustics.
However, Fig. 5(a) employs the analytical ray solution for this
profile and is thus free of many problems that might afflict a
production code.

Asa third example, we consider Munk’s** canonical deep-
water, sound-speed profile, where

c(z) = 1500 {1.0 + 0.00737 [x — 1 +exp(—x)]},
for z<5000 m, (27)
c(z) =¢(5000), for z>5000 m,
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FIG. 4. Ray trace for deep source { 1000 yards) downward-refracting pro-
file.
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with
x=2(z— 1300)/1300 .
A sound-speed plot and ray trace for a 1000-m source are

- shown in Figs. 6 and 7, respectively. Since our beam-trace code

does not at present atlow for bottom reflection we have restrict-
ed the angular spread in all programs such that only water
borne rays are included. Propagation loss is computed along a
receiver track located at a depth of 800 m and extending from
the source out to 100 km. The source frequency has been re-
duced to 50 Hz in order to facilitate comparison with a full-
wave model and to demonstrate the performance at lower fre-
quencies. This particular source depth leads to a complicated
field structure including caustics and shadow zones, which as
usual manifest themselves in the ray-trace propagation loss
curve of Fig. 8(a) as regions of infinite and zero pressure, re-
spectively. We see an additional fault in the form of a dropout
at a range of approximately 5 km. This stems from the fact that
the ray results were obtained by a production ray code that
failed to identify a pair of ray paths bracketing the receiver
point in range and therefore was unable to compute the ray
field at that point. While this particular problem of identifying
eigenrays is not intrinsic to ray codes it should be noted that it is
typical.

ele]
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it /// ’ :
7

3060
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4000

5000
o w20 30 40 50 B0 70 BO 90 100
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FIG. 7. Ray trace for source at 1000-m depth.
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mode propagation loss for Munk profile. (¢} Gaussian beam propagation
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The Gaussian beam loss curve is shown in Fig. 8{c) and,
as before, corresponds much more closely to the reference solu-
tion of Fig. 8(b) throughout the entire 100-km receiver track.
The Gaussian beam solution was obtained using three beams
per degree (88 beams) and required 130 s of CPU time on a
VAXI11/750. The reference solution was obtained by the
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FIG. 9. (a) Normal mode propagation loss for Munk profile. (b} Gaussian
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KRAKEN normal mode program® by including only those
modes with phase velocity less than the half-space velocity.

Finally, in Fig. 9 we include the gray shade plot of trans-
mission loss computed throughout the water column. (The
transmission loss is multiplied by a factor of ' to compensate
approximately for cylindrical spreading. ) Figure 9(a) was ob-
tained using Gaussian beam tracing and Fig. 9(b} by using the
normal mode program. We note that the agreement is excellent
throughout the water column.

Vil. SUMMARY

In summary, the Gaussian beam approach appearstobe a
very promising alternative to conventional ray tracing. In our
test problems it has generated much more accurate answers
than the ray solution. Although it requires slightly more effort
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to integrate the beam equations than the ray equations, this is
compensated for by the fact that eigenray or two-point ray
computations are not required and a beam trace code may well
run faster than a similar implementation of ray tracing. Addi-
tional work is indicated to formally treat beams incident at
critical or grazing angles and to carefully assess the merit of
rules used for choosing beam initial conditions.

APPENDIX A: DERIVATION OF THE BEAM EQUATIONS

Cerveny et al.'* provide a derivation of the beam equations
for a line source in three dimensions. We follow closely their
derivation with modifications to accomodate a point source.
We begin with the Helmholtz equation governing the pressure
due to a monochromatic point source:

V% +w?u=0,. {Al)

Our objective is to construct a solution about each ray that
has the character of a beam. For any particular ray we intro-
duce a ray-centered coordinate system (s, #), where s is the arc
length along the ray and » is the normal distance from the ray.
The (s, #) coordinate system is regular in some neighborhood
of the ray and constitutes an orthogonal curvilinear coordinate
system. The scale factors™ of the transformation are

(hsshnrhe) = ('h: llr) »
where

h=1+ (c,/c)n.

Thus the Helmholtz equation is (s,n) coordinates reads

2 1 r w®
Vi 4+ 2 —_[[(_) s] + (h ]+_
TEY TR U, (Arten ), 2"

2
=%uﬂ + hu,, +h%u + (%)Su,
rs rn
+hu, +—u, +—hu, . (A2)
rh r

We next employ the parabolic substitution

u{s,n) = U(s,myexpl —iwr{(s)], 7(s) =f L
c(s)
(A3)
This vields
2
“l”“ "‘m—z—"ﬂ’(l) ] U-2%2U, + UN]
h c C/s ¢
2
+hU,, + h——
¢ (s,n)
s(o-20)(1) 1hu 42 (0-i20)
¢ his rh ¢
+ (r,/rYRU, =0. (Ad)

The parabolic substitution involves ¢{s) = c¢(s,n =0), so
that Eq. (A4) involves both ¢(s) and ¢(s,n ). We use the nota-
tion that ¢ denotes c(s), while ¢{s,n) is used to explicitly indi-
cate variation in (s,n) whenever both dependencies exist. We
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next introduce a stretching of the normal coordinate v = o'/?n
and collect terms of like power in «:

1 1
@ csn) A

+a)[ a2 U—i(l) v-Zy,
(he?) c\h/s he

ir, ] +w”z( r.h )
rhe M

1 1y n
Ly, Us(—) Iy —o.
Ut Uf) +5

Note that no approximations have been made up to this
point, so that Eq. {(AS) corresponds exactly to the Helmholtz
equation. Now,

1 1 (Zc) +(6(0n)2 2%)"2+
D e — n — —_—
SAsn) A P i /2

and

1 2k, 6(h,)°  2h,\n?
Tf=lﬂ(h3)”+( PEa h3)7+

After rewriting these equations in terms of v = ©'/?z and sub-
stituting for the coefficient of @? in (AS5), we obtain

w“ — (C"—;)Vz + O(a)_”z)]
¢

+hU,, —

(AS5)

1 ir,
— ———U + AU, l
* (hcz) (h) rhc
r.h
+aJ”2(Uh )
+1U+U(1)+ U =0. (A6)
kT « th

We now seek a solution of Eq. (A6) in the form
Usvw)=U+U"0'"*+ Uw + -

Then, to Q(w), one obtains

Crn ic, zr
-5 -2
¢ ¢ re
The final form of the ray-centered parabolic wave equa-
tion is obtained after introducing W (s,v), defined by

’UE+UE’,,,=0.

(A7)

Uls,v) = W(sv) y{c(s)/7) . (AB)
This gives
— Qife )W, + W,, — (Ve,,/cYW=0, (A9)

which is equivalent to Eq. (11) of Ref. 12. We observe, how-

ever, that the resulting u(s,n) differs by a factor of \/r, repre-
senting the effect of cylindrical spreading. In particular,
combining Eqs. (A3) and (A8), we obtain

u(s,n) = /C(:’ exp( iwf%) W(s,v) . (A10)

It remains to solve the equation for W(s,v). The remain-
der of the analysis is identical with that of Cerveny et al.'*
We seek
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Wiswv)
and obtain
—i(24,/c + AT) — AV (D /e + T 4-¢,, /%) =0.

Since this equation must be satisfied for all v, the terms in
parentheses must both vanish. Thus

24,/c+ AT =0, (A12)
T./c+T?+¢,,/c=0. (A13)

Equations (A12)and (A13) may be solved numerically to
yield W(s,v) and, therefore, the beam u(s,n). Some addi-
tional manipulations are, however, useful in order to obtain
linear equations. One advantage of doing so is that a pair of
linearly independent solutions can be computed and then
initial conditions can be changed without recalculating 4 (s)
and I'(s). The equation for T is a simple Ricatti equation,
which may be reduced by standard techniques to a pair of
first-order linear equations. One obtains

= A(s)exp[ ~ ?I(s)/2] (A1l

I(s) =p/q, (Al4)
where

g, =¢cp,

pe= — g/ (A15)
In terms of p and g one may easily check that

A(s) = AgNgq(s) , (A16)

where 4, is an arbitrary constant. Combining (A10),
(Ald4), and {A16), one may represent the beam as

u(s n) = Ay Je(s)/[rg(s)]

io{r(s) + 0.5[p(s)/g(s)]n*}),
(A17)

where p(s), g{s), and 7(s) are defined by Eqs. (A15) and
(A3). The quantity 4, remains arbitrary, reflecting the lin-
earity of the Helmholtz equation. Finally, as observed by
Cerveny et al.,'? the general solution of (A9) is known in
terms of products of Hermite polynomials and Gaussians,
which form a family of beam modes. Higher-order beam
modes may optionally be included in the expansion of a point
source.

xexp(—

APPENDIX B: SOLUTION OF THE p-g EQUATIONS IN
AN m2-LINEAR DOMAIN

Let (ry2,) denote the coordinates of the beam origin
and ¢, the sound speed at that point. Without loss of genera-
lity we pick a coordinate system such that the sound-speed
gradient is parallel 1o the z axis. Then, defining n{(z) = ¢,/
¢(z), we have by assumption,

n(z) =a+ bz (B1)

and n(z,) = 1, where g and b are arbitrary constants. We
also denote the initial takeoff angle by a. The central axis of
the beam follows the conventional ray equations, which in
this environment (n” linear) are well known tc generate
parabolic trajectories. One obtains

zZ(r)[b/(dcos’a) | (r—ro)* + (tana) (r = ry) + 24,
(B2)
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which one may quickly check gives the correct depth z, for
the range r, and also has the correct slope of tan & at this
point.

The p—¢ equations admit two linearly independent solu-
tions. Our starting point is the representation obtained by
Madariaga®® in general stratified environments. One solu-
tion is obtained by inspection;

ql=sin6, (B3)

where 6 is the ray angle at an)(g?(@v the medium. At times
we shall leave results in terms of the ray angle, remembering

that at an arbitrary (#,z) the index of refraction may be com-
puted and then the angle is determined by Snell’s law:
(B4)

Knowing g, the corresponding p, is obtained by differ-
entiation. Recall that
p=L 99 _ndg _ndgadr (BS)
cds cods ¢, drds
Since dn/dr=0 one obtains from the ray equations
p =cos o and then

n(z)cos @ =cosa.

dr _cosa (B6)
ds n
Thus
P_iﬁcosa__zcosad_q (B7)
c, dr n cg dr
and
plz_—cosa.di£=cosa oseie.__ (BS)
¢, d@ dr Co dr
Differentiating Snell’s law, one obtains
46 _ dn cosd (B9)

dr dr nsin@’
Also, differentiating n* = a + bz gives 2n dn/dr = b dz/dr
and so

dn_ b dz (B10)
dr  2n dr
which implies
ﬁ=_”_2cotgiz._ (B11)
dr 2n dr
Substituting in (B8), one finally obtains
cos o b dz
= cos 8 —cot 8 —
/ c 2n* dr
3
—gs5bdz cosa (B12)
¢y dr n'sin @

A second linearly independent solution is obtained by
reduction of order. One finds??

q,=fsing, (B13)
where fsatisfies
&___c (B14)

dz  n(z)sin’8’
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or ‘
df dé Co
STt B15
dl dz n(z)sin’ @ ( )
As before, one invokes the differentiated Snell’s law
6, =bcos 8/(2n%sin 0) , (B16)
which is substituted in (B15) to give
ar _ 2con 25 cos a (B17)

d0 bcosOsin’f bcoosiOsinid
Equation (B17) is integrated to obtain

S(8) = [(1 — 2 cos® 8)/(cos 8 sin 8) |2¢, cos a/b
(B18)

and so,
g = (2c4 cos a/b) (1 — 2 cos® §) /cos 6
= (2¢,/b) (n—2cos’ar/n) . (B19)

Again, the corresponding p(s) is obtained by differentiation.
Recalling (B7),

_ Cosa @
2 cy dr
_cosa (Ec_o) (d(n ~ 2 cos® a/n) ) (d_n)
Co b dn dr
2
=cosa(l +E_C¥)i9’£_ (B20)
n n dr
In summary, the general p.g solution has the form
p=4p,+ Bp,, q=A4q,+ Bg, (B21}
where
b= ( b dz/dr) cos’ e
! 2¢, n*sing’
=sinéf,
g, =sin (B22)
dz 1  2cos’a
pr=—cosa|l—+———I],
dar n n

g = (2cp/b ) (n — 2 cos* a/n),

and, of course, dz/dr = [b /(2 cos’ )] (r — 1) +tana.
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