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Acoustic Models and Sonar Systems 
Michael B. Porter 

(Invited Paper) 

Abstract-Acoustic models are used extensively in simulating 
sonar-system performance. Lately, such models have assumed a 
still more important role as they are incorporated in the signal 
processing algorithms. We review the basic model types and 
discuss their use in sonar systems. 

I. INTRODUCTION 
OMPUTATIONAL Ocean acoustics is usually concerned C with solving the Helmholtz equation (or reduced wave- 

equation) in an azimuthally symmetric environment: 

where c(r, z )  is the ocean sound speed as a function of range 
and depth. In addition, w is the angular frequency of the 
source which is located at the rangeldepth coordinate (r, , z,). 
To complete the problem specification, we must also add 
boundary conditions at the ocean surface and bottom and a 
far-field radiation condition. 

The goal is to solve for the response of the channel 
to the source, that is, to solve for the acoustic pressure 
p ( r ,  z). The transmission loss (in dB) is then defined as 
T L  = -2Ologl0(47~1p(r, .)I). Knowing the transmission loss 
between a source and reciever (TL),  how loud the source is 
(SL) ,  how loud the background noise is over which we seek to 
hear the source (NL) ,  and how directive the listening system is 
( D I )  we can then predict whether a source is detectable. This, 
of course, is expressed by the well-known sonar equation [ 11: 

DT = S L  - T L  - N L +  D I ,  (2 )  

where DT is the detection threshold. When all the terms on 
the right add up to equal the detection threshold we begin to 
detect the source. 

The various terms in the equation may be associated 
with computational acousticians TL, noise modelers N L ,  
signal processors DI ,  and experimentalists SL. Practically 
speaking each component involves a few dB of uncertainty. 
On shore, in methodical intermodel comparisons, a fraction 
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Fig. 1. (a) Comparison of an early propagation model to a more modem 
full-wave model (a) Colossus II-empirical model (1960). (b) SNAP-normal 
mode model (1980) (from [2]). 

of a dB error may be of interest in suggesting a more 
serious problem. At sea far greater errors may be induced 
by the common difficulty of just characterizing the bottom 
in coarse groups such as silt or sand. 

Despite these difficulties there has been great progress in 
modeling transmission loss with a clear benefit in predicting 
sonar performance. This is illustrated in Fig. 1. This figure 
compares predicted versus measured detection ranges for two 
different generations of models. The models were applied to 
experimental data from 12 different sites in a blind fashion, 
that is, the environmental information was provided but not 
the answers ( T L  data). 

The upper figure was obtained using the Colossus II model 
developed in the late 1950's. It uses empirical formulas for 
terms such as cylindrical spreading and volume attenuation. 
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The lower figure was obtained using a modem normal mode 
model [ 2 ]  and shows a much tighter clustering of points to 
the diagonal line (that represents perfect predictions). (These 
results are taken from a more complete report comparing many 
different modes [3].) 

Depending on one’s point of view this figure presents 
good or bad news. On the one hand, the efforts to improve 
the acoustic models have clearly had a real payoff. The 
results of the older, empirical model hardly correlate with 
the measured data. On the other hand, one can easily see 
points where the full-wave model has an error of a factor 
of two in predicted detection range. 

Some would argue that the errors that remain in acoustic 
modeling are no longer due to shortcomings in the acoustic 
models but instead represent limits in our knowledge of the 
environment. On the other hand, our ability to survey the 
environment is also improving significantly. For instance, side- 
scan sonar systems are now able to provide detailed surveys 
of the ocean topography over wide areas in reasonable time. 
Progress in both oceanographic modeling and in remotely 
sensing the ocean structure is encouraging. In shallow water, 
the characteristics of the bottom are critical. However, on the 
time scales of interest to sonar systems, the ocean bottom is a 
static feature: In sites of particular interest its bathymetry and 
geoacoustic characteristics can be carefully measured. 

In the remaining sections, we will review the basic 
types of acoustic models and demonstrate their application 
to conventional sonar simulation problems. We will also 
present examples of their use in more advanced signal 
processing applications. 

11. ACOUSTIC MODELS 

The acoustic models in widespread use today fall into 
four major classes: 1) ray theory, 2 )  spectral integration, 3) 
normal mode, and 4) parabolic equation. This classification is 
imperfect in that there are models that combine ideas from 
various approaches. Nevertheless, it is a useful starting point. 
In a short space, it is difficult to do justice to the various 
approaches. A more complete discussion is provided in [4]. 

The need for these various types of models stems from the 
diversity of applications. While one model may be capable 
of treating all the problems one encounters, usually at least 
some of the problems are more efJicientZy treated by another 
model. For instance, high-frequency problems are often most 
easily treated with ray models, range-dependent problems with 
parabolic equation models, and elastic wave problems with 
spectral integral models. 

The starting point for all these models is the Helmholtz 
equation given in (1) .  This equation could be treated directly 
using finite-difference or finite-element methods. This is 
seldom done. Typically, such models require about 10 
nodes per wavelength. Ocean acoustics problems are often 
thousands of wavelengths in range and tens of wavelengths 
in depth. The resulting linear systems of equations for the 
acoustic field at each node involve millions of unknowns. 
Thus, such techniques are not computationally very practical. 
The remaining approaches described in the next sections 
all make various simplifying assumptions. 
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Fig. 2. Sound speed profile for the Pacific environment. 

A. Ray Theory 

Ray models were widely used in the early 1960’s. To- 
day they are often viewed askance as more accurate full- 
wave models have become more popular. However, for high- 
frequency, broadband problems the ray methods may be hun- 
dreds of times faster. Rumors of their death are greatly 
exaggerated. 

From a mathematical point of view, the ray equations are 
based on a high-frequency approximation. One seeks a solution 
of the Helmholtz equation of the following form: 

(3) 

where IC = W / C O  and CO is a reference sound speed. This gives 
an infinite sequence of equations for the functions 4 ( ~ ,  z )  and 
A ~ ( T ,  z ) :  

(v(b)2 1 - C i / C 2 ( T ,  Z), 

2 0 4 .  VAo + (A4)Ao = 0, 
2 V 4 . V A j  + (A4)Aj = -AAj-l, j = 1, 2,... (4) 

The equation for $ ( T ,  z )  is known as the eikonal equation 
(after the Greek eikonos for image or icon). The equations 
for Aj are known as the transport equations. The eikonal 
equation is solved by introducing a family of curves (rays) 
which are defined by being perpendicular to the level curves 
(wave-fronts) of 4(r, z ) .  One finds that the rays satisfy: 

dp - 1 dc 
- 

dr 
ds ds c2 dr’  
- = cp(s),  - --- 

1 dc 
- 

dz 
ds ds c2 dz ’  - = C(-(s), dc - _ _ _  

where ( T ( s ) ,  z (s ) )  is the trajectory of the ray in the range- 
depth plane and ( p ( s ) ,  [(s)) is the local tangent vector to 
the ray. Of course, to solve these equations we need initial 
conditions. These are that the rays originate from the source 
with a user-specified takeoff angle. 

As an example we consider a deep-water Pacific environ- 
ment shown in Fig. 2. We place the source at a depth of 25 
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simple picture is only clouded by the need to introduce 90" 
phase shifts when the ray crosses through caustics. 

Ray models have been developed to a high degree but 
unfortunately the journal literature gives little insight into the 
techniques used in state-of-the-art programs. A fairly complete 
summary is provided in [4]. 

B. Spectral Integral Methods (Fast-Field Program) 

Spectral integral and normal mode models are closely 
related. Both models assume a stratified ocean (no range 
dependence) and take advantage of this for speed. We must 
hastily mention that they can be extended to range-dependent 
cases in various ways. 

With the assumption that there is no range variation it 
is useful to view the field in range as a sum of sines and 
cosines, i.e. a Fourier series. As often happens for problems on 

BELLHOP- Pacific environment 

50 100 
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Fig. 3. Ray trace for the Pacific environment. 

m and then solve the ray equations with a sequence of ray 
takeoff angles varying over 425'. The resulting ray fan is 
shown in Fig. 3. Dotted lines have been used to show the 
bottom bounce paths. 

This plot is only the skeleton of the acoustic field; to 
obtain the associated pressure field we must proceed further. 
However, this ray trace is often the most important product of 
a ray model. As mentioned above, other techniques can give 

infinite domains the series involves a continuum of sines and 
cosines with an arbitrary horizontal wavenumber-the discrete 
sum becomes an integral. Finally, because the problem is in 
cylindrical coordinates the proper range functions are actually 
Bessel functions. These may be regarded as sines and cosines 
with cylindrical spreading. 

Mathematically we start by applying a Fourier-Bessel trans- 
form to the Helmholtz equation given in (1): 

G(k ,  Z) = p ( r ,  ~ ) J o ( k r ) r d r  (7) 1- more accurate transmission loss figures; however, they do not 
readily provide this simple graphical ray picture showing the 
important energy paths. 

If we do wish the complete pressure field we must use these 
rays to solve the eikonal for the phase along the ray. The phase 
function $(r,  z )  is given by a simple integral: 

which leads to 

d2G + (" - k Z ) G  = S(Z - z s ) ,  

dG 
dz 

dz2 e2 (2) 

G(0) = 0,  -(D) = 0. (8) (6) 

The ray coordinates are also useful for solving the transport 
equations for Ai(r, z ) .  Not liking to solve an infinite number 
of such equations one normally just solves for the leading 
term Ao(r, z ) .  The remaining terms have increasing powers 
( i k ) j  in the denominator and one argues that for sufficiently 
high frequency, they are negligible. Formally, the leading 
term A0 satisfies a simple differential equation along the ray. 
In practice, the amplitude is often obtained from the rays 
themselves by calculating the spread between two adjacent 
rays. 

Ray models have well-known shortcomings stemming from 

We have included simple boundary conditions to illustrate 
the form. In practice, the lower boundary at z = D is usually 
modeled as a half-space leading to a slightly more complicated 
equation. Solving the above depth-separated equation is the 
key numerical problem in a spectral integral code. 

The solution of this boundary value problem yields G(k ,  z )  
and the final pressure is then computed using the inverse 
Fourier-Bessel transform as 

cc 
p ( r ,  z )  = 1 G(k ,  z ) Jo (kr )kdk .  (9) 

the high-frequency approximation inherent in their derivation. 
Basically, wherever there is a transition in the field, it occurs 
abruptly in the ray result while a correct full-wave solution 

A feature of ray models is that they can be adapted to 
broadband problems with minor additional cgmputational cost. 

a delay equaling the travel time and attenuated based on the 
spreading of the ray tube. (A simple dB/wavelength attenuation 
is normally added to account for volume attenuation.) All the 
rays arriving at a single point (eigenrays) yield a different 
arrival since usually each ray has a different travel time. This 

This is the so-called spectral integral representation of the 
solution. As discussed above, we may view this integral as 
a sum of sines and cosines with a cylindrical spreading term. 

to the Bessel function to 

would show a gradual change on the scale of a wavelength. TO make this formal, we use a large-argument approximation 

The source waveform is simply propagated down the ray with e i x / 4  K 
P ( T ,  2) M - / G(k,  z ) G i h T d k .  (10) 

6 0  

Here we have also ended the integral at some upper limit 
K usually chosen a little above max(w/c(z)). Beyond this 
point the integrand decays exponentially and does not make 
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Fig. 5.  Transmission loss for the Pacific environment. 

a significant contribution. This may be seen in Fig. 4, where 
we have plotted the integrand for a 15 Hz source at depth 25 
m and a receiver at depth 100 m. The integrand represents 
the spectrum of the field. Performing the integral in (10) we 
recover the actual field versus range as illustrated in Fig. 5. 
This integral actually assumes the form of a Fourier transform. 
Thus, when there are many ranges it is efficient to evaluate 
it using an FFT. This technique was introduced by DiNapoli 
151. The model that combined an FFT with the spectral integral 
formulation was called the Fast-Field Program (FFP). 

Since the FFP approach is based on a standard Fourier 
transform many of the numerical issues follow directly from 
standard filtering theory. Time corresponds to range and fre- 
quency to wavenumber. Long range calculations therefore 
require fine wavenumber sampling. Fine sampling in range is 
obtained by increasing the upper wavenumber limit, K (or by 
zero-filling). When the spectrum is chopped abruptly as we did 
in Fig. 4 high-frequency ringing (Gibbs phenomenon) occurs 
that can be seen in Fig. 5. This ringing can be eliminated by 
tapering the kernel using, for instance, a Hann or Hamming 
window [6]. 

For range-independent problems the spectral integral result 
is typically taken as an exact solution. The key approximation 
is that of using the far-field approximation to the Hankel 
function. This approximation is accurate to a fraction of a 
dB beyond a couple of wavelengths from the source. 

There are several acoustic codes based on this spectral 
integral representation. Probably the most widely used model 
is SAFARI [7]. It allows complicated multilayered elastic 
sediments, broadband and directive sources, and, interfacial 
roughness. 

C. Normal Modes 
If we look back at the spectrum shown in Fig. 4, we see 

that it has a spiky character. The spectrum is even spikier than 
this plot would suggest since it is plotted a slight distance 
off the real-axis to avoid the nearly singular points. Thus, the 
spectrum is really dominated by a finite number of discrete 
spatial 'resonances'. These correspond to the normal modes 
of the channel. 

In the method of normal modes we solve for the frequencies 
of these spatial resonances. From a mathematical point of view 
there are two ways of deriving the modal solution. We may use 
methods from complex variable theory and replace the spectral 
integral by a sum of residues. Alternatively, if the boundary 
conditions are simple we can derive the modal expansion using 
separation of variables. We shall follow the latter approach. 

Again one begins with the Helmholtz equation and seeks a 
solution as a sum of normal modes: 

00 

A T ,  2) = p j ( z ) R j ( r ) .  (1 1) 
j=1 

Substituting the above form into the Helmholtz equation one 
obtains: 

dZj 
Zj(0)  = 0, -(D) dz = 0, (12) 

which is identical to the spectral integral form of (8), apart 
from lacking the forcing term on the right-hand side. The 
above equation has an infinite number of solutions that are 
like modes of a vibrating string. The modes are characterized 
by a mode shape function Zj(z) and a horizontal propagation 
constant kj (analogous to a frequency of vibration). 

The range functions, Rj(r)  are found to satisfy, 

which has the solution Rj(r)  = iZj(z,)Hil) ( k j r ) .  Putting 
all of this together, one finds that, 

00 

A j=1 

or, using the asymptotic approximation to the Hankel function, 
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Fig. 6 shows selected modes for the Pacific environment. 
The source frequency for this case was chosen to be 100 Hz. 
The first group of modes corresponds to a family of ray paths 
that are completely trapped (refracted) within the SOFAR duct. 
Modes 1 and 10 are examples of such modes. The higher order 
modes penetrate further towards the ocean boundaries. 

The second group of modes corresponds to rays that strike 
the ocean surface but refract away from the ocean bottom. 
Mode 80 is an example of this group. Typically, these modes 
would be lossier since they lose some energy when reflecting 
off the rough ocean surface. 

The last group of modes involves ray paths that are so 
steep that the rays reflect off both the surface and bottom. 
These modes tend to be the lossiest since they experience both 
surface and bottom bounce losses. Mode 160 is an example 
of this class. 

The various loss mechanisms are accounted for by making 
the sound speed complex. As a result the horizontal wavenum- 
bers k, have a positive imaginary part and therefore decay 
exponentially with range. As discussed above, the higher order 
modes are typically the lossiest. As such one computes only 
a finite number of the lower order modes. 

Once the modes are calculated we can rapidly add them 
up to construct an image of the acoustic field. In Fig. 7 we 
have done this using a source depth of 25 m. Note how the 
modes sum up to form the convergence zone pattern that 
we previously saw in the ray trace. In the near field we 
see a common Lloyd mirror pattern appearing as a series 
of beams emanating from the source. This pattern is due to 
constructive and destructive interference between the source 
and its reflection in the ocean surface. The beam that is 
launched at a shallow angle refracts to form the convergence 
zone pattern. The steeper beams reflect off the ocean bottom 
using significant energy in the process. 

In the far-field the boundary losses tend to strip off the 
higher order modes. However, in the near field we must retain 
many modes to accurately account for the steep angle paths. 
An extra complication is that mode codes often use a trick 

0 .  60 

Depth (a) 

5000 * 100 
0 .  60. 

Fig. 7. Transmission loss for the Pacific environment. 

in which all sediment and ocean volume attenuation is first 
removed. With this done, the modes divide into two distinct 
classes (trapped and leaky modes) depending on whether their 
corresponding rays are steep enough to travel into a lower half- 
space (basement). The advantage of this approach is that the 
trapped modes are purely real (no loss) which simplifies the 
finding of eigenvalues. A loss factor is then added after the fact 
based on the attenuation along the ray paths associated with 
the modes. The leaky modes have complex wavenumbers and 
therefore require special root finders; they are simply ignored. 

The means that such mode codes have a hardwired limit on 
how many modes they can include. This limits their accuracy 
to longer ranges. Obviously, the range at which such models 
are valid depends on the required accuracy and details of the 
environment but a rule of thumb is that they are appropriate 
at ranges greater than 10 water depths. 

Note the complementary nature of normal mode and spectral 
integral modes. At longer ranges the modal calculation gets 
easier: Fewer modes need to be included. With spectral integral 
codes we must calculate the integrand at more points in its 
spectrum to obtain the field at long ranges. As such, an FFP 
model is often preferable for near-field calculations and a 
normal mode model for long ranges. 

Like the other model types, there are many existing 
codes to use from. The most widely used are KRAKEN 
181 and SNAP [ 2 ]  which are based on an identical 
finite-difference algorithm [9]. 
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D. Parabolic Equation Modeling cold core eddies 

The parabolic equation was introduced in underwater acous- 
tics in 1973 by Tappert and Hardin. In the PE derivation 
one factors the Helmholtz equation into right and left trav- 
eling wave equations that involve operator square roots and 
are formally pseudo-differential operators. However, as an 
introduction to the method we follow the simpler route of 
the original derivation, seeking a solution of the Helmholtz 
equation in the form, 

p ( r .  z )  = u(r ,  z ) H ( y ( k 0 7 . )  

where IC0 is a reference wavenumber. Substituting into ( I )  one 
finds, 

(17) ‘Ur, + 2ik[)U, + k,2(7L2 - 1 ) ? L  + ‘?/,,z = 0. 

At this point, one discards the first term to obtain the parabolic Fig. 8. Triangulation of the Gulf Stream environment. 
equation: 

712 - 1 / constructed to echo the principal features of the problem 
( I 8 )  including the meadering Gulf Stream, cold core eddies, and U ,  = 2k”- ’U + ~ ‘16 . 

2 2kh 

This latter step is justified assuming weak range-dependence 
and narrow angle propagation, i.e., when the dominant energy 
comes from rays propagating nearly horizontally. 

The advantage of the parabolic equation over the origi- 
nal Helmholtz equation is that the PE can be solved by a 
straightforward march in range which requires much less com- 
putational effort. From a numerical point of view, this range 
marching is typically implemented using either standard finite- 
difference techniques [ 101 or using a fast Fourier transform as 
in the so-called “split-step’’ method [ 1 I ] .  

In problems with strong range-dependence the PE method 
is generally the method of choice. The PE method, however, 
has several approximations. These approximations introduce 
errors that increase as the corresponding ray angle increases. 
However, a great deal of work has been done in the last 
10 years to construct higher-angle PE’s so that now the 
angle limitation is seldom a problem. This incrcased accuracy 
generally comes at the expense of computer time. For more 
details on modem PE’s we refer the reader to Collins [ 121 and 
references therein. 

E. Three-Dimensional Acoustic Modeling 

A simple way to obtain a 3-D acoustic prediction is to run 
a 2-D model for a sequence of bearings. This approach is 
sometimes called N x 2 - 0  or 2.5-D modeling. It neglects the 
bending of ray paths in the horizontal plane; however, these 
effects are often negligible. Of course, full 3-D modeling is 
also possible; ray and PE approaches have a direct generaliza- 
tion that poses no major theoretical problems. However, even 
with the geometric growth in computing power, full 3-D cal- 
culations are still impractical for the operational environment 
without some simplifying assumptions. 

A widely used approach to 3-D modeling is based on 
normal modes [13]. To begin the calculation, the environment 
is divided into a triangular grid as illustrated in Fig. 8. 
This particular problem involves propagation across a 600 
km square section of the Gulf Stream. The grid has been 

a seamount. The grid lines have been colored to show cold 
(blue) and warm (red) water. 

This scheme minimizes the number of triangles needed; 
however, for production runs it is generally more convenient 
to construct a regular triangular grid conforming to standard 
environment data bases such as BLUG (for bottom loss 
characteristics) and DBDB (a digital bathymetric data base). 

Once the grid is constructed, the normal modes are calcu- 
lated for each node using the sound speech, bottom depth and 
bottom impedance corresponding to the latitudeflongitude of 
the nodal point. This is normally the most time-consuming part 
of the calculation; however, on modem workstations hundreds 
of such mode sets can be calculated in less than an hour for 
low- to midfrquencies. 

Finally, a source position is selected and the field is cal- 
culated on a fan of radials emanating from the source. Along 
each radial the adiabatic mode formula gives the following 
approximation for the field: 

XI(,, 0 )  

Zrrl(Z“:  0, 0) 

The local modes Z,,(z; T :  0) at a given range T along the 
bearing angle B are computed using linear interpolation within 
each triangular element. 

The resulting transmission loss is shown in Fig. 9. This plot 
shows three orthogonal surfaces corresponding to TL for 1 )  a 
fixed receiver depth, 2) a fixed bearing, and 3) a fixed range. 
The slice for a fixed bearing clearly shows a typical deep 
water convergence zone pattern. The disc taken at a receiver 
depth of 400 m shows the acoustic shadow generated by the 
Gulf Stream. A smaller shadow is also generated by one of 
the eddies. 

An important characteristic of this model is that if the 
source is moved a new 3-D T L  plot can be calculated in 
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Fig. 9. Transmission lo\s for the Gulf Stream environment. 

a few minutes. Most of the computational work is done in 
calculating the mode set at each nodal point; very little work 
is required to perform the modal sums for computing the 
acoustic field. This makes the model especially attractive for 
problems where the arrays and the sources are moving, for 
example for studying optimal deployment of ships in a task 
force. Indeed, the acoustical calculations are so rapid that the 
real computational problem is one of optics: the rendering and 
visualizing the massive 3-D acoustic data sets. 

Such 3-D acoustic models require a great deal of envi- 
ronmental information. In the long term one imagines that 
oceanographic data may be provided by combining ocean 
circulation models, mixed layer models and satellite mea- 
surements. Detailed bathymetric data will be available from 
side-scan sonar systems. Ocean bottom reflectivity data will 
be available from high-quality bottom loss data bases ob- 
tained by combining improved bottom inversion methods 
with the human insight of seafloor geologists and geophyri- 
cists. 

The reader scrutinizing the detailed fringes in the 3-D 
T L  plots is certainly deluding himself about their reliability. 
However, even without such detailed 3-D environmental data 
the 3-D acoustic models can provide very useful information. 
We can clearly see the shadows of major oceanographic 
features and plan array deployment accordingly without plac- 
ing tremendous confidence in the accuracy of the SSP data. 
Similarly, an optimal array location can often be determined 
knowing only that the bottom in one area is more or less 
reflective than that of another area. The actual dB loss per 

111. APPLICATIONS IN SONAR SYSTEMS 

Acoustic models are used in a variety of ways in connection 
with sonar systems. At their most mundane (but important) 
they are used like a weather forecaster to predict the sonar 
range of the day. In such cases, the detailed structure of 
the peaks and nulls in the transmission loss plots is of little 
relevance. The range of the day may in turn be used to suggest 
deployment patterns for air-deployed sonobuoys or, on a larger 
scale, for surface ships in a naval task force. Besides the 
lat/long positioning of hydrophone arrays, depth positioning 
is also a critical factor. This is discussed in more detail in 
[141. 1151. 

In the last I O  years research has accelerated on sonar 
systems where the acoustic model is an integral part of the 
sonar system. The key point in such systems is that the 
refractive behavior of the ocean distorts the sound and as 
a result the source is out of focus. An acoustic model then 
provides the electronic lens to correct for this array myopia 
(or more precisely ametropia). Besides the refractive effects 
there are also the multiple reflections off the nearly perfect 
mirror of the ocean surface and the murkier but still reflective 
mirror at the ocean bottom. Again, the acoustic model can be 
used to find the true source in this house of acoustic mirrors. 
Some approaches are described below. 

A. Matched-Field Processing 
Let us first review traditional source localization schemes 

based on plane-wave beamforming. The array elements are 
reflection may not be critical. phased to generate a beam in a particular look-direction. The 
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- 55 beam is then swept across the ocean to locate the source. Let us 0 .  

review the equations for this process. We suppose the array i$ 
being steered to a particular look direction 8. The appropriate 

= (20) 

steering vector has elements Oepth In dB 

4 l n o  

-70 
which corresponds to the field that would be received on the 5000. 0.  50. 
array due to a plane wave incident at an angle 8. Here, k = w / c  
is the wavenumber. The coordinate z measures distance along 
the array. 

The field actually received by the array is a data vector 
denoted by d .  In conventional beamforming the steering angle 
H is varied over a sweep of angles. At each angle we then 
compare the steering vector to the actual field measured by 
the array. When the steering vector most closely matches the 
data vector we claim to have identified the source bearing. 

Of course, there are many ways to compare the steering and 
data vectors. The standard approach is to use a dot product: 

Often this is written 

P(8)  = e*Re ( 2 2 )  

where R = dd*. We will call this the unnormalized power. 
Typically we have many observations dl of the field received 
on the array. We may then elect to average the data to form an 
improved estimate of R given by (1/L) dld; where L 
is the total number of frames. The matrix R is the covariance 
matrix or cross-spectral matrix. 

This scheme is sensible for horizontal arrays seeking targets 
in a horizontal plane; however, for a vertical array the effects 
of beam reflection by the surface and bottom are important. 
Furthermore, the ocean medium is refracting and therefore 
distorts a plane-wave field into a curved wavefront. As such, 
we must reassess the value of steering the array using plane- 
wave vectors. 

To see how strong these effects are, we simulate a vertical 
array of 21 hydrophones positioned in the water column from 
1000 m to 2000 m in depth. We steer the beam in the 
broadside direction (8 = 0) and observe the beam response 
P(r .  210 = 0) as the source is moved over range and depth. 
To simulate the beam response we need an acoustic model. 
As a point of reference, we first remove the top and bottom 
ocean boundaries and use an isovelocity ocean. This gives a 
free space problem for which the acoustic model is especially 
simple. The field on the 7th phone is simply given by a 
spherical wave: 

where R, is the slant range from the source at ( 1 . .  a )  to the 
hydrophone at ( r z .  z l ) :  

R, = J ( r  - r,)* + ( 2  - (24) 

In the following simulations we will use a 15-Hz source. The 
unnormalized beam response for the free rpace case is shown 
in Fig. 10. We see the main lobe steered to the horizontal and a 

0 .  

Oepth I n )  dB 

5000. 50. 1 - 7 0  
0 .  

0 .  50.  

Fig. IO.  Propagation of an acoustic beam using a plane-wave steering vector: 
(a) free space; (b) surface and bottom reflections included; (c) surface, bottom 
reflections and ocean refraction included. 

series of sidelobes. (The sidelobes can be significantly reduced 
by applying an amplitude taper to the beam steering vector.) 
We may view this figure in two ways. Thinking of the array 
as a listening device, it represents the sensitivity of the array 
to sources at various positions. 

Thinking of the array as a projector, Fig. 10 represents the 
field generated by an array of point sources phased to generate 
a horizontal beam. The term e t  given in (21) then represents 
the field at (7..  2 )  due to a point source at ( r i ;  2;). The dot 
product d*e = $:(J, sums the individual point sources with 
a phasing to generate a beam in a particular direction. In the 
following discussion, it is convenient to adopt this latter view 
of the array as a projector. 

In Fig. 10(b) we include the effects of the ocean surface 
and ocean bottom. The sidelobes are seen to reflect off the 
surface and bottom yielding a clustered beam pattern. In Fig. 
1O(c) we have included a sound speed profile for a particular 
site in the Pacific. Note how the beam lobes are refracted. It is 
clear from these plots that a plane-wave steering vector fails 
to generate a straight beam in the desired direction. If we want 
the beam to reach a target at a particular position then we must 
account for ocean refraction and purposefully steer the beam 
at an angle away from the source. 

As mentioned earlier, acoustic models can provide a correc- 
tive “lens” for the array. For this purpose, we need waveguide 
steering vectors which take into account the refractive and 
multipath effects of the waveguide. This is easy to do. We 
replace the plane-wave steering vector e(8) by a new e(r .  z )  
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Fig. I I .  Propagation of an acoustic beam using a waveguide steering vector. 
Beam steered to range = 2.5 km. depth = ( a )  SO0 m; (h)  IS00 m; (c) 4500 m. 

representing the field that would be received on the array due 
to a point source at (T .  z )  and taking into account all the 
complex effects of the ocean channel. This is, of course, just 
what the acoustic models described in Section I1 are designed 
to do. For instance, we can use normal mode formula given 
in ( I S )  to obtain: 

This formula gives us the steering vector required to focus 
a beam at a particular coordinate ( T .  z) in the waveguide. 
Choosing for instance, a focal range of 25 km range and three 
focal depths 500, 1500, and 4500 m, we now obtain the three 
beam patterns shown in Fig. 1 I .  Note how this waveguide 
steering vector directs a lobe in just the correct direction to 
refract to the desired focal point. I t  also directs sidelobes to 
the surface and bottom which bounce to the same focal point. 

From the viewpoint of localization, there is a flaw in these 
beam patterns. The acoustic intensity is always strongest near 
the sources used to generate the beam. Or, if we think of the 
array as a listening device the array senses sources that are 
closest to it  much more easily than those far way. Thus, if we 
identify a source by a peak in the beam response there is an 
intrinsic bias toward positions where the apparent source level 
is higher. This is easily corrected. We scale the beam response 
in accordance with the intensity that would be received if the 
source in the array were incoherent. The normalized pwoer 
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Fig. 12. Normalized power of an acoustic beam using a plane-wave steering 
vector: (a) free space; (b) surface and bottom reflections included; (c) surface, 
bottom reflections and ocean refraction included. 

is then 
e* Re 

e*ed*d' 
r(e) = - 

To put this in perspective we return to the case of a 
plane-wave steering vector and compute the normalized power 
surface shown in Fig. 12. The top figure (free space) now 
shows a low intensity in the near field. A source in the near 
field generates a highly curved spherical wave front poorly 
matched by our plane-wave steering vector. In the far field the 
spherical wave is well approximated by a plane wave (with the 
correct angle of incidence) and the beam response is high at the 
correct bearing. In Figs. 12(b), (c) where the boundaries and 
refractive effects have been included we see similar effects. 

Of greater interest is the normalized beam pattern obtained 
with waveguide steering vectors shown in Fig. 13. The maxi- 
mum beam response now occurs precisely at the desired focal 
point. We see several sidelobes with high intensities however 
by adjusting the color scale the mainlobe at the specified focal 
point is easily distinguished. 

We have been speaking of these plots as representing the 
field due an array of sources. The basic calculation is a simple 
dot product between two vectors e and d where one of the 
vectors is a fixed steering vector and the other vector represents 
the field that would be obtained on the array due to a point 
source at a particular range and depth. Thus Fig. 13(a) may 
also be viewed as an ambiguity surface for a source located 
at 2.5 km range and 500 m depth as the array is steered to 
the domain of possible source positions. (This relationship 
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Fig. 13. Normalized power for an acoustic beam uung a waveguide $teering 
vector. Beam steered to range = 25 km, depth = (a )  500 m; =(b) 1500 
m; (c) 4500 m. 

between the back-propagated field and the ambiguity surface 
was highlighted in [16].) The existence of a global maximum 
at the true source position means that the processor correctly 
localizes the source. 

This technique of using acoustic models in the signal pro- 
cessing was clearly enunciated by Bucker [ 171 and referred to 
as matched-field processing. Several people proposed closely 
related methods, see for instance, 11 81 or independently arrived 
at the same scheme, see for instance, [ 191. 

Matched-field processing is one of the most exciting and 
demanding applications of acoustic models. Both the phase 
and the amplitude are exploited in the signal processing. It  is 
easy to appreciate how severe these demands are. In Fig. 13(a) 
we clearly see the beam focus relies on three beams. There is: 
1) a direct beam that travels to the focus without striking the 
boundaries; 2) a bottom bounce beam; 3) a beam that strikes 
the surface, then the bottom before entering the focal point. 
To properly focus at the desired position the starting phase of 
each beam must be such that they all arrive in phase at the 
focal point. The source frequency is 15 Hz so the wavelength 
is approximately 100 m. Thus, if the bottom depth is off by 
just 25 m the bottom reflected wave will arrive exactly out of 
phase. Small changes in the bottom properties will also cause 
errors in the phase of the bottom reflected wave. 

The wave takes about 17 s to travel from the array to the 
focal point at 25 km range. A change in the sound speed of a 
few meterslsecond can also change the path length by half a 

Fig. 14. Schematic of the shallow water problem. 

wavelength and scramble the relative phases of different paths. 
Looked at this way it would seem naive to attempt this 

sort of processing. On the other hand, some features will be 
robust. Looking at Fig. 13(a), it is clear that even with an 
incorrect phase, the direct, bottom and surface bounce beams 
will all come together somewhere near the desired position. 
Furthermore, even where localization fails, there may be a 
significant increase in detection performance. 

Many authors have performed exhaustive parameter studies 
to quantify the importance of thse effects, see for instance 
1201. A recent text by Tolstoy [21] provides a thorough review 
of such work. Unfortunately, useful qualitative insights are 
difficult to come by since the behavior of the acoustic field 
depends in a complicated way on SO many factors such as 
source frequency, water depth, and source position. 

In summary, conventional plane-wave beamforming uses 
too naive a replica of the received field in certain cases. 
Matched-field processing may make the opposite error of 
assuming too much accuracy in the acoustic model. The 
optimal processor must strike a compromise. This will require 
generating a family of replica vectors representing the spread 
of possible ocean SSP’s, bottom types and source positions. 
Progress in this area is given by [22], [23]. 

B. Broadband Localization and Back-Propagation 

While most of the matched-field work has been directed to 
the passive CW scenario it is clear that the general technique 
of using acoustic models to improve detection and localization 
is broadly applicable. We may consider passive and active 
CW processing. We may also consider passive and active 
broadband processing. 

An interesting approach-matched signal (MESS) process- 
ing-was used by Parvulescu, Clay and coworkers at the 
Hudson Laboratories [24], 1251. Their approach required time- 
domain correlations and broadband acoustic models. At the 
time when the original experiments were done (1961-1963) 
these sorts of numerical calculations were quite difficult. Today 
we can study the process on a workstation quite readily. 
(Previous results were presented in [26].) The correlations 
are trivial but the broadband acoustic modeling still poses 
something of a burden. 

The process is perhaps best introduced by example. We 
consider a shallow water scenario illustrated in Fig. 14. A 
Gaussian pulse is emanated from a source located in the middle 
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Fig. 15. Source time series for the shallow water problem. 
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Received time series for the shallow water problem. Fig. 16. 

of the waveguide and at a range of 3 km from the array. The 
transmitted pulse is shown in Fig. 15. Note that its peak occurs 
at 0.01 s. The resulting received time series is shown in Fig. 
16. In an operational system this would be the received data. 
In our case we synthesize the data using a time domain FFP 
model [27]. 

This 3 s time series is then time reversed and played back 
through the array of hydrophones again using a broadband 
acoustic model. In Fig. 17 we show three snapshots of the field 
at times 2.5, 2.99, and 3.5 s. We observe the back-propagate 
pulse coming to a focus in the second frame. The focusing 
occurs at a time slightly less than 3 s. The pulse actually 
refocuses a hundredth of a second earlier. This corresponds 
to the fact that the Gaussian has its peak at one hundredth of 
a second. 

The snapshots have all been normalized to lie between 
f 1 before plotting, however, the maximum value before 
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0. T Ime 5 2.500 flex : .2175E-05 1 
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Fig. 17. Snapshots of the backpropagated field for the shallow water 
problem. 

normalization is shown on the plot. Notice that the peak value 
is also highest at the refocusing time of 2.99 s. The source is 
localized by searching for the position of this maximum. 

An operational scenario involves measuring the receiver 
time series on the array and using a computer model to back- 
propagate the data. Just as in CW matched-field processing a 
lot is asked of the acoustic model: It must be able to duplicate 
the effects of the ocean waveguide. As mentioned above, when 
Parvulescu and Clay performed the original experiments the 
resources were not available to do the acoustic modeling on 
a computer. They therefore used a massive analog computer 
consisting of the ocean itself (the so-called natural lab). That is, 
they played the signal back through the ocean. In the vicinity 
of the source position they then measured the time series 
of the backpropagated signal and demonstrated the expected 
refocusing at the source position. Besides observing this in 
both deep and shallow water, they were also able to perform 
the experiment in a cluttered laboratory relying on the echoes 
from the boundaries of the laboratory. 

In our simulation, the circumstances are reversed. The 
computing power is cheap and the massive analog computer is 
expensive to run. We therefore perform the entire experiment 
in silicon. A clear graphical motivation of the above process 
is provided in the report by Parvulescu [25]. From a mathe- 
matical point of view one is localizing the source by seeking 
a match between the received time series r ( t )  and a replica of 
the time series. For the CW case we had previously used a dot 
product. In the time domain the obvious check for similarity 
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is a correlation: 

Here, e(t) is a replica or prediction of the received time series. 
We shall neglect the term in the denominator to yield an un- 
normalized power. This degrades the localization performance 
but simplifies both the numerics and our discussion. 

The replica time series is given by: 
W 

e(t, z) = s(T)g(t  - 7, Z ) ~ T  (28) J_, 

J_, 

where S ( T )  is the source time series and g( t ,  z) is the impulse 
response of the channel as computed by an acoustic model. 
Substituting this form into (27) we obtain: 

00 

P(., 2)  = s(t)rbP(t + 7 ,  z ) d t  (29) 

where 
W 

r y t ,  2)  = J__r(-t)g(T - t ,  z)d7 (30) 

represents the back-propagated field, that is, the field obtained 
by using the reversed time series r(-t) as a source. Thus, 
correlating the predicted and measured receiver time-series 
is equivalent to correlating the source time-series with the 
back-propagated time series. 

In practice we do not know the source time-series although 
in principle we can construct it through deconvolution. A 
simple estimator is obtained by assuming the source is impulse 
so that we can set s ( t )  = 6( t  - to). We then obtain, 

(31) 

This function is the back-propagated field we plotted in Fig. 
17. 

The source localization can be done by looking for a peak in 
the P(T)  or in some other measure such as the square integral 
of P(T).  (A variety of options are compared in [28], [29].) 
Note that by Parseval’s theorem 

P(.) = r y t o  + 7,  2).  

where P ( w )  is the Fourier transform of P(T).  Then, from 
(27) it is easy to see that 

P(w) = r(w)*e(w). (33) 

This is the same power function used in the previous section 
for a CW source. Thus, back-propagation in the time-domain 
is equivalent to constructing an ambiguity surface for each 
frequency and adding up (integrating) the individual ambiguity 
surfaces. Clearly, if we knew the source spectrum we would 
prewhiten by adding up a weighted sum of the ambiguity 
surfaces. In assuming a delta function for the source, we also 
assumed a white spectrum. 

In the previous section, we discussed the scaling of the 
wwer to construct a normalized wwer function for CW 

matched-field processing. Similarly this back-propagation al- 
gorithm is improved by scaling P(T, z) in accordance with the 
mean energy level that would be obtained by backpropagating 
incoherent impulses. 

IV. CONCLUSIONS 

Acoustic models play an important role in the design 
and optimal deployment of sonar systems. In one sense, the 
four major model types that we described have reached a 
state of maturity-computations along single bearings and 
for single frequency sources are readily made. However, 
more demands are now being placed on such models. For 
instance, full-wave modeling of reverberant fields in a 3-D 
Ocean environment is a challening problem. Such problems add 
the complexity of both broadband sources and the azimuthal 
variation in the environment. These factors essentially increase 
the dimensionality of the problem from 2-D (range-depth) to 4- 
D (3 space dimensions plus time). Furthermore, the reverberant 
or backscattered field is the component most often neglected 
to simplify transmission loss modeling. 

Another key issue affecting acoustic models is their direct 
use in the signal processing algorithms. As we have illustrated, 
the bending of sound and the numerous bottom and surface 
echoes can seriously degrade standard schemes based on 
plane-wave beamforming. Matched-field processing problems 
that use acoustic models to correct for these effects are challen- 
ing for many reasons. They involve repeated field calculations 
as a trial source is swept over the domain of possible source 
positions to generate waveguide replica vectors. Again, when 
this is done in 3-D for transient sources the computational 
costs are nontrivial. Lastly, optimal processors require that a 
deterministic Ocean environment be replaced with a stochastic 
one recognizing the error bars on the environmental data. The 
acoustic models must then be run repeatedly in a Monte-Carlo 
fashion to construct an ensemble of acoustic fields. 
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