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NUMERICAL METHOD FOR ACOUSTIC NORMAL MODES
FOR SHEAR FLOWSY

M. B. PorTERT anD E. L. RE1ss
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( Received 11 January 1984, and in revised form 7 July 1984)

The normal modes and their propagation numbers for acoustic propagation in wave
guides with flow are the eigenvectors and eigenvalues of a boundary value problem for a
non-standard Sturm- Liouville problem. It is non-standard because it depends non-linearly
on the eigenvalue parameter. {1n the classical problem for ducts with no flow, the problem
depends linearly on the eigenvalue parameter.) In this paper a method is presented for
the fast numerical solution of this problem. It is a generalization of a method that was
developed for the classical problem. A finite difference method is employed that combines
well known numerical techniques and a generalization of the Sturm sequence method to
solve the resulting algebraic eigenvalue problem. Then a modified Richardson extrapolation
method is used that dramatically increases the accuracy of the computed eigenvalues. The
method is then applied to two preblems. They correspond to acoustic propagation in the
ocean in the presence of a current, and to acoustic propagation in shear layers over flat
plates.

1. INTRODUCTION

-e method of normal modes is a standard procedure for solving acoustic propagation
sblems in ducts with flows and in shear layers; see, e.g., references [1,2]. Typical
amples of such problems are the propagation from a sound source in the ocean in the
asence of a current, the propagation of sound through a duct of a jet engine, and the
opagation in boundary layer or other shear flows over flat plates. In the last example,
the flow is considered to extend to “infinity” normal to the plate, then the normal
ydes contribute to the more general spectral representation of the acoustic field.
ywever, flows over flat plates are frequently modeled by a finite layer with the pressure
| the upper surface of the layer taken as the far field pressure distribution.

The normal modes for the duct can be determined analytically only for relatively simple
-ws and sound speed distributions. More generally, it is necessary to determine them
:merically. In this paper, problems of two-dimensional stratified flows are considered,
ch as boundary layer or other shear flows, through ducts of finite depth D, where the
und speed of the fluid is also stratified. The appropriate normal mode problem for such
ws is then reduced 1o an eigenvalue problem for a second-order, linear ordinary
flerential equation. Since the acoustic medium is stratified, the coefficients in this
‘uation depend only on the depth variable z The eigenvalue parameter k is the
-opagation number of the acoustic waves and the eigenfunctions are the normal modes.
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1 92 M. B. PORTER AND E. L. REISS

Since k occurs non-linearly in this equation, it is a non-standard Sturm-Licuville eiger
value problem unless the fiow velocity is identically constant. There have been sever:
methods developed for the numerical solution of the standard problem; see, e.g., referenc
[3] and references given therein. In particular, in reference [3] a fast finite differenc
method to determine accurately the propagation numbers and the normal modes ht
been presented. The method is a combination of well-known numerical procedures suc
as Sturm sequences, bisection, Brent’s and Newton's methods for root finding, inver:
iteration, and finally a modified form of Richardson extrapolation. A minor modificatic
of the method is required to apply it to the present problem with non-constant flov
because of its non-linear dependence on k, for which the Sturm sequence procedu
previously employed is not directly applicable.

The normal mode problem is formulated in section 2. The method and the require
modification are briefly outlined in section 3 and the Appendix. Finally, to demonstra
the efficiency of the method it is applied to two problems in section 4. In the first proble
a parabolic profile for the stratified flow velocity, to simulate an ocean current,
considered. The Munk [4] profile is employed for the stratified ocean sound speed.
the second problem the flow velocity is linearly stratified and the sound speed is constar
thus simulating the flow in a shear layer over a flat plate.
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2. FORMULATION

The two-dimensional basic flow velocity U(z), which is paralle! to the rigid wall - =
is given by

U(z) = (4%(2), 0, 0), {2

where the horizontal flow velocity u%(z) is a specified function. The upper layer of t
duct is at z =0, so that the z co-ordinate is directed downward. The two-dimensio:
Euler’s equations for the adiabatic flow of a compressible fluid are then linearized abc
the steady stratified flow in equation (2.1) to obtain the acoustic equations. Then
eliminating the density and the entropy from the resulting equations one can determ:
that the acoustic velocity vector u*, which has components [u*(x, z,1),0, w*(x, z,1)]},;a
the reduced acoustic pressure p* = p,P, where P is the physical pressure, and p, is i
constant fluid density of this fiow, satisfy a system of three partial differential equatio.
One seeks solutions of these equations in the form

u*(x, z, t) = U(Z) ei(kx—wl)’ w*(x, z, ‘) — W(Z) ei(k.\'—nﬂ),

LEREIE)
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pr(x, z,t})=p(z)e

where w is a specified radian frequency and the propagation numbers k are to
determined. The depth dependent amplitudes then satisfy a system of three ordin.
differential equations. By eliminating u(z) and w{z) from these resulting equations, ¢
can show that p(z) satisfies the self-adjoint, second-order ordinary differential equat

(p'/a(z)Y+b(z)p =0, (
where primes denote differentiation with respect to z and the functions a(z; w, k) ¢
b(z; w, k) are defined by

a(z; w, k)= (w—ku’(2)), blz;w ky=1/c}z)—K/a(z; w; k) {:

and c(z) is the specified stratified sound speed of the fluid.
To complete the formulation of the boundary value problem one specifies bounc
conditions that on the upper surface of the duct z =20 the pressure is a constant, w}
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is here set equal to zero. On the lower surface z = D the acoustic normal velocity vanishes.
This gives
p(0)=0,  p'(D)/a(D}=90. (2.5)

The boundary conditions in equations (2.5) are standard for ocean acoustics propagation,
A brief discussion and interpretation of the pressure release condition at z=0 for the
shear layer flow over a flat plate is given in section 4.

In summary, the eigenvalue problem is as follows: for specified shear flows u’(z),
radian frequencies o of the source and sound speeds c(z), determine the propagation
numbers k=k; for which equations {2.3) to (2.3) have noa-trivial solutions (normal
modes) p(z). It is not a standard Sturm-Liouville eigenvalue problem since equation
(3.3) depends non-linearly on the parameter k&

If the medium is stationary, so that u°(z) =0, then equations (2.3) to (2.5) are reduced
to

prA(wif () ~kp=0,  p(0)=p(D)=0, (2.6)

which is a standard Sturm-Liouville eigenvalue problem since it depends linearly on the
parameter K.

. 3. THE NUMERICAL METHOD

One first defines a mesh by dividing the interval 0<z< D into N equal subintervals
by the points z, = ih, i=0,1,..., N, where the mesh width h is defined by h= D/ N. Then
one approximates the differential equation (2.3) on this mesh by replacing the first
derivative in this self-adjoint operator by a standard two-point centered difference
approximation, centered at the midpoint of the subinterval. This leads to the difference
approximation

ait apio—lait et aila— hbdp +aili P =0, i=1,2,..., N, (3.1)
where the notation ’
bi'_'-' b(zi)1

has been used and p, i =0, 1,..., N are approximations to the eigenfunctions evaluated
at the mesh points. The quantity py+, is the value of p corresponding to the fictitious
point zy.; = D+ h. The boundary conditions (2.5) are approximated by

i=01,...,N (3.2)

Aip12™= a(zu—uz)-

Pa=0, an-_12(pn —Pn-1) T anv1s2( Py — on) =0 (3.3,3.4)

By solving equation (3.4) for py., and substituting the result into equation (3.1) with
i= N, one finally obtains the algebraic eigenvalue problem

Alk)p=0 (3.5)
as an approximation to the continuous eigenvalue problem in equations (2.3) to (2.5).
Here p is the N-dimensional vector with components p,,..., py and the tridiagonal
N x N matrix A is defined by
—(aj)y+ash) + b ash O
A= alin

—(ailat at)+hh aiiz . (3.6)
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94 M. B. PORTER AND E. L. REISS

The midpoint “‘averaged™ difference approximation in expression (3.4) for the derivati
yields a matrix with elements involving only values of a(z) and b(z) inside the doma’
It is a non-linear algebraic eigenvalue problem in the sense that the elements of Al
depend non-linearly on k.

The modified Richardson extrapolation procedure, which is now to be briefly describe
is used to obtain more accurate estimates of the eigenvalues of the continuous proble
in equations (2.3) to (2.5) from the eigenvalues k;(h) of the algebraic problem in equati
(3.5). A discussion and comparison of the standard and modified Richardson extrapolati
procedures for the eigenvalue problem (2.6) has been given in reference [3]. Thus, o
expresses the jth eigenvalue k;{h) of equation (3.5} with mesh width h as

ki(h) = k[ (0) = kI(h)+ k;+ coh*+ e, h* .. .. @3

Here k{(h) is the jth eigenvalue of the algebraic eigenvalue problem (3.5) where t
sound speed and convection velocities are replaced by “averaged” values & and ¢
respectively. In addition, k/{0) corresponds to the exact eigenvalue of the continuc
problem in equatxcms (2.3) to (2.5), where ¢(z) and u®(z) are replaced by the constc
values ¢ and i°, respectively. These isovelocity eigenvalues satisfy the dispersion relati

{[w—k/(h)a®) e =[k} (h))* = E(h), (3.8
where E;(h) is defined by | |
E,(h)=sin {[(j=$)(m/ DYUh/2)}/(h/D), (3.

and ¢,, ¢, . .. are constants. The constant fc: is then the modified Richardson approximati
to the jth eigenvalue of equations (2.3) to (2.5). It is determined from the linear algebr:
system that results from applying expression (3.7) to a sequence of successively fir

meshes {h;} = h,, ha, ..., h,,. Since the approximation depends on the sequence of me
widths that is employed 1t is appropriate to denote the approximation corresponding
the meshes h,, .1, ..., Ay, by k G(py o, pta)

In brief, the values k,-(h,,) for the sequence of mesh widths are obtained as follos
For the coarsest mesh width, one first finds an isolating interval for each eigenvalue
This is defined as an interval in k which contains only the eigenvalue k;. For the first,
largest, eigenvalue an upper bound for this interval is given by Theorem 1 in the Append
Zero is taken as the lower bound since one is considering only modes which propag:
to the right: i.e, in the downstream direction. This interval is successively bisected ur.
it contains only the first eigenvalue. In reference [3] this condition was determined !
the algebraic problem corresponding to equation (2.6) by ¢ounting sign changes in t
Sturm sequence. Since the algebraic system of equation (3.5) is non-linear in the eigenva)
parameter, the Sturm sequence method is not directly applicable to the present proble
In Theorem 2 of the Appendix an index function is derived which gives a zero-counti
procedure for the present problem. It is a generalization of the Sturm counting metht
as is discussed in the Appendix.

The process is repeated for each subsequent eigenvalue. Now, however, the previc
eigenvalue’s lower bound is an upper bound for the next eigenvalue. In addition, lov
bounds for the current eigenvalue may have already been computed during the bisecti
process for the previous eigenvalues. The isolating intervals provide initial estimates -
each eigenvalue. More accurate approximations of each eigenvalue are then obtained
solving for the roots of the characteristic function by using Brent's method, see referer
[5], which combines bisection, linear interpolation and inverse quadratic interpolati.
Convergence is then guaranteed to the isolated eigenvalue.
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Initial guesses for the eigenvalues corresponding to the second and subsequent meshes
are obtained by using the modified Richardson extrapolation procedure, but now extrapol-
ating to the desired mesh size. Since isolating intervals are not obtained for these meshes,
Brent's method is not applicable. One then uses the secant method to refine the root,
although other procedures such as Newton's method could be employed, as was done in
reference [3). This change was motivated by the greater difficulty in computing the
derivative required for Newton's method in the present problem. The choice of mesh
sizes is motivated by convergence and speed of computation, as discussed in reference [3].

After the eigenvalues are obtained to the desired accuracy by the modified Richardson
extrapolation procedure, the eigenfunctions are found by an inverse iteration, see reference
(6], defined by

P0=1, Apn-l=ps1

s=1,2,..., (3.9)

where the eigenvalues and difference equations of the final mesh are employed. (See
reference [3] for more detailed discussions of the speed and accuracy of the method and

comparisons with other methods for the numerical solution of equation (2.6).)

4. APPLICATIONS OF THE METHOD

Two applications to demonstrate the method are presented in this section. The first
- application, which is motivated by acoustic propagation in the deep ocean in the presence

TasLE 1(a)
Numerical eigenvalues Kj(p) = k;(p) X 10? for the Munk profile with a shear flow

ar__

N= 77 92 115 146
ET= 0-599¢ G-2950 0-3320 0-3740 _“'Refined”
j K,(1) K,(2) K,(3) K, (4) R(1,2,...,6)
i 1-6683910356 1-6683900317 1:6683891873 1-6683886180 1-6683876881
2 1-6561391651 1-6561344266 16561304410 1-6561277537 16561233648
3 1-6446288764 1-6446175231 1-6446079753 1-6446015384 1-6445910275
4 1-6339082100 1-6338892127 1:63138732459 1-6338624864 1:6338449252
5 1-6245773713 1-6245529575 1:6245324471 1-6245186302 1-6244960865
6 1-6146308702 1-6145837542 1-6145440886 1-6145173250 1-6144735835
7 1-6011227064 1:6010286247 1-6009493706 1:6008958698 1-6008083855
8 1-5844601893 1-5842931934 1.584152429% 1-5840573622 1-5839018298
9 1-5650044376 1-5647281245 1-5644950558 1-5643375649 1-5640797632
10 1:3428093778 1-5423750916 1-5420084983 1-5417606387 1-5413546617
i 1-5178372599 1-5171819688 1:5166283592 1-5162538167 1-515639926%
12 1:4900109981 1-4890545443 1.4882457513 1-4876981754 1-4867959970
13 1:4592255438 1-4578672391 1-4567174252 1-4559383404 1-4546593258
14 1:4253484436 1-4234628209 1-4218647112 1-4207808749 1-4189998084
15 1-3882160453 1-3856474504 1-3834674956 1-3819R74827 1-3795526272
16 1.3476266485 1-3441821866 1-3412541901 1-3392638601 1-31359851289
17 1-3033303010 1-2987703811 1.2948868579 1-2922431553 1.2878813090
18 1-2550140114 1-2490392697 1:2439353376 1-2404615173 1-2347127099
19 1.2022800638 1-1945126259 1-1878643783 1-1833210798 1-1757938037
20 1-1446133203 11345688075 11259424751 1:1200317544 1:1102106641
21 1-0813299784 1-0683735441 1-0571983426 1-0495149799 1-0367004770
22 1-0114931761 0-9947660697 0-9802559212 0-9702338116 0-9534327835
23 0-9337648270 0-9120516611 0-8930654770 0-8798657902 0-8575717465
24 0-8461226163 0-8175847393 0:7923296454 07745922487 0-7442700035
25 0-7452526106 0-7068053509 0-6720821039 0-6472466223 0-6037941518
26 0-6249984014 0-5704642723 0-5190682563 0-4806930362 0-409069688 5
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TasLE 1(b)

Errors in numerical eigenvalues ¢,(p)= k;— k;( p) for the Munk profile
with a shear flow

N= 77 92 115 146
ET= 0-59%0 0-2950 0-3320 0-3740
J g(1) {2} g;(3) g;(4)
1 —3-3E-08 —-2-3E-08 —1-5E-08 —-9-3E-09
2 —1-6E~-07 -1'1E-07 —-7-1E-08 —4-4F — 08
3 —3.8E-07 ~2-6E-07 -17E-07 -1-1E-07
4 —6-3E-07 ~4-4E-07 —2-8E-—-07 -1 8E-07
5 -8 1E-07 —-5-7E-07 —~3-6E—-07 ~2:3E-07
6 —1-6E—-06 -1-1E-06 —T1E—-07 ~4-4E-07
7 -3-1E-06 -2-2E-06 —1-4E-06 -87E-07
8 —56E-06 —31-9E-06 —-2-5E-06 —1-6E-06
9 —9-2E - 06 —6:5E~06 -4-2E-06 -2 6E~06
10 —1:3E-05 —-1-0E~{5 —-6-5E—06 —41E~- 06
11 -2-2E-05 -1-5E~05 —9.9E 06 —61E~06
12 -3-2E-05 —-2-3E~05 —1-4E-05° -9-0E—-06
13 —4.6E-05 -3-2E~05 -2-1E—-05 -1-3E-05
14 —-6-3E-05 -4-5E~05 —2-9E-05 ~1-8E-05
15 -8 7E-03 ~6-1E~05 -3-9E-05 . =2-4E-05
16 -1 2E-04 -8:2E~-05 —~5-3E-05 -3-3E-05
17 —1'5E-04 -1-1E~-04 -7-QE-05 —4-4E —-05
18 —-2-0E—-04 —1-4E-04 —9-2E-05 -5-7E—~05
19 —2-6E—-04 -19E-04 -1-2E-04 ~7-5E—05
20 -3-4E-04 -2-4E-04 -1.6E-04 ~9-8E-05
21 -4-5E-04 -3-2E-04 ~2-0E-04 ~-13E-04
22 —5-8E-04 ~4-1E-04 -2-TE-04 ~-1-TE-04
23 —7-6E -04 ~5-4E-04 -3.5E-04 -2:2E-04
24 —1-0E-03 ~7-3E-04 ~4-8E - 04 -3-0E~04
25 —-1-4E—-03 ~1-0E-03 ~6-8E —04 -4-3E-04
26 —2:2E-03 ~1:6E~03 -}1E-03 -7-2E-04

of a current, is called the ocean acoustics problem. One considers a parabolic profile for
the current u%(z) and a Munk profile for the stratified sound speed c€z), using the
parameters suggested in reference [7] and employed in reference [3]. Specifically, one
employs the following parameters: o =8, D=5000, W (z)y=3[(z- D)/ DY, c(2)=
1500[1-0+0-00737(x — 1 +e~*)], where the parameter x(z) is defined by x=2(z~D)/D
and lengths and times are measured in metres and seconds, respectively. The Mach
number for this current is approximately 1/1000. In Table 1{a) the numerically determined
eigenvalues of the algebraic problem for the indicated mesh widths (h=D/N) and for
the downstream traveling modes are presented. The column labeled “refined” contains
the eigenvalues numerically determined by the method of using extrapolations with several
more refined meshes. The errors in these eigenvalues, which are defined as the differences
between them and the “refined” eigenvalues are shown in Table 1(b). In Table 2 the
eigenvalues obtained by the medified Richardson extrapolation procedure, and their
errors, are presented.

One can observe from Table 1 the anticipated O(h?) convergence in that doubling the
number of mesh points reduces the error by a factor of about 4. In contrast, the errors
in the eigenvalues obtained from the extrapolation method are reduced by as much as ¢
factor of 1000 with each additional extrapolatian, for the first few eigenvalues. This factor
decreases for the higher order modes. The symbol ET in the tables denotes the executior

] .“.‘..




ACOUSTIC NORMAL MODES FOR SHEAR FLOWS 97

ime in seconds on the Northwestern Cyber 170/730 to compute all the given eigenvalues
corresponding to each mesh. One can observe that the execution times for the finer meshes
are less than the execution times for the coarsest mesh. This demonstrates the merit of
using Richardson extrapolations to generate initial guesses.

These results show that the efficiencies of the methods for the present problem and the
¢tationary medium problem treated in reference [3] are comparable, with one significant ,
difference: the extrapolation process for the present problem is less effective for the modes ot
close to cut-off. This occurs even with u® =0 in the present problem. This discrepancy is ‘
a result of extrapolating with k rather than with k*, as was done in reference [3]. Intuitively,
this occurs because the values k*(h) move smoothly along the real line as A is refined
but the values of k(k) lie along either the real or the imaginary axes, and a pair of
eigenvalues on the real line can coalesce at the origin and then split along the imaginary
axis as h decreases. The extrapolation process cannot determine this abrupt transition
because real values of k will always vield real extrapolates. Although none of the
eigenvalues shown in Table 2 actually split, it can be shown that proximity to the splitting
point is sufficient to adversely effect the convergence.

[n Table 3 the eigenvalues from this convected problem are compared to the eigenvalues
obtained when u® = 0. The change varies from 2-:3 %107 to 5-6 x 107%, an effect that would
be significant at ranges of approximately 300 km and beyond. A reasonable estimate of

TaBLE 2(a)
Modified extrapolations K;(p,...,q)= }Ej(p, ..., q) X107 for the Munk profile with a shear
flow
N= 77 92 115 146 ,?k T e e e e
ET= 0:5990 9-2950 03320 _0-3740 _“Refined” i .
i K1) K(1,2) K,(1,2,3) K(1,2,3,4) K(1,2,...,6) ,;
1 1-6683910253 16683876838 1-6683876881 16683876880 1-6683876881 ;
2 1-6561383254 1-6561233440 16561233648 1:6561233648 1-6561233648 f
3 1-6446223804 1-6445909679 16445910274 1-6445910275 16445910275 +
4 1-6338831535 1'6338447688 1:6338449253 1-6338449252 1-6338449252 .
5 1:6245085270 16244958020 1:6244960873 1-6244960865 1-6244960865 *
6 1-6144761774 1-61447336%4 1:6144735844 1-6144735835 1-6144735835 b
7 1-6008183841 1-6008080613 1:6008083870 1-6008083855 1-6008083855 u
B 1-5839153345 1-5839013570 1-5835018327 1-5839018298 1-5839018298 e
9 1-56409493134 1-5640791280 1-5640797684 1:5640797632 15640797632 ;
10 1-5413708831 1-5413538417 1-5413546700 1-5413546616 1-5413546617 '
11 1-3156569760 1-5156388948 1-5156399399 1-5156399268 1-5156399269 N
12 1-4868177918 1-486798720% 1-4868000164 1-4867999969 1-4867999970 s A
13 1-4546778378 1-4546577692 1-:4546593540 1-4546593256 1-4546593258 . .' S
14 1-4190190244 1-4189979290 1-4189998480 1-4189998080 1-4189998084 N ;
15 1-3795725261 1-3795503753 1-3795526817 1-3795526265 13795526272 ' i
16 1-3360056617 1-3359824453 1-3359852024 1-3359851278 1-3359851289 a
17 1:2879023731 1-2878781206 1-2878814063 1-2878813073 1-2878813090 o
18 1:2347341097 1-2347089234 1-2347128367 1:2347127073 1:2347127099
19 1-1758151826 1-1757892933 1-1757939657 1-1757937999 1-1757938037
20 2-1102313793 1-1102052468 1:1102108660 1:1102106585 1-1102106641
21 1:0367193521 1-:0366938584 1-0357007176 1-0367004686 1-0367004770
22 0-9534475727 0:9534244224 0-9534330408 0-9534327696 0:9534327835
23 0-8575778368 0-8575604638 0-8575719198 0:-8575717185 0-8575717465
24 0-7442566961 0-7442525985 0-7442696350 0:7442699161 0-7442700035
25 0-6037307156 0-6037587054 0-6037905600 0-6037936151 0-6037941518
26 0-4088149578 0-4089357245 0-4090310095 0:4090601306 0-4090696885
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TasLE 2(b)

Errors in modified extrapolations &(p, ..., q)=k;— Ej(p, .-+, q) for the
Munk profile with a shear flow

N= 7 92 115 146
ET= 0-5990 0-2950 0:3320 0-3740
i €1) £(1,2) £(1,2,3) 8(1,2,3,4
1 -3-3E-03 4-2E-11 ~71E-14 9-1E—14
2 —1-SE—-07 2-1E-10 3-6E-13 4-1E-15
3 -3-1E-07 6-0E—10 4.4E~13 ~-1-6E—13
4 -3-8E-07 1-6E—09 -112E-12 9-2E ~15
5 —1-2E-07 2-8E-09 ~73E-12 1-4E-14
6 ~2-6E—08 2-1E-09 -8-7E-12 2-8E—14
7 -1-0E-07 3-2E-09 —-1-SE-11 4:5E—14
8 —1-4E - 07 4-7E 09 ~29E-11 11E-13
9 —1-5E-07 6-4E-09 -51E~11 2-3E—-13
10 -1-6E-07 8:2E-09 -8-4E-11 4:-35E—13
11 -1-7E-07 1-0E - 08 -1-3E-10 T-9E—13
12 -1-8E-07 1-3E-08 -1-5E - 10 1-4E-12
13 —1-9E - 07 1-6E — 08 -2-8E-10 2-7E-12
14 -1-9-07 19E-08 -4.0E-10 44E-12
15 -2-0E-07 23E-08 -5-4E-10 T 1E~-12
16 -2-1E-07 2-7E-08 -7-3E=-10 1-1E-11
17 -21E-07 3-2E-08 -9-7E-10 1-7E—-11
18 -2-1E-07 3-8E -08 ~1-3E-09 2-5E-11
19 ~-2:1E-07 4:5E-08 —-1:6E-09 37E-11
20 -2-1E-07 5-4E - 08 -2-0E —09 5-6E—11
21 —-1-9E-07 6-6E —08 -24E-09 8-4E~-11
22 -1:5E-07 8-4E-08 -2:6E-09 1-4E-10
23 —-6-1E—-08 1-1E - 07 -1-7JE-09 2-38E~10
24 1-3E - 07 1-7E-07 3-6E-09 8-7E-10
25 6-3E-07 3-5E-07 3.6E—08 5-4E —09
26 2-SE-06 1-:3E-06 3.9E—07 9-6E—08

this effect of slow convective flows can be obtained by comparison to a related problem
with the sound speed and convection velocities replaced by their average values, but we
do not present these results.

In the second application of the method, which we call the aeroacoustic problem, the
following parameters are employed: w =3300m7, D=1, u°(z)=165(z— D)/ D, ¢=330.
Then the corresponding dimensionless acoustic wave number= wD/c =107 and the
Mach number of the fiow equals ;. These parameters correspond to acoustic propagation
at moderate subsonic flow velocities in a strongly sheared layer over the rigid surface
z= D, where the “‘upper surface” of the layer is approximated by a constant pressure
surface. Since the fluid above the sheared layer is considered to extend to infinity normal
to the plate, the imposed boundary condition implies that one is considering only trapped
modes.

In Table 4, the numerically determined eigenvalues and their errors are presented for
a sequence of relatively coarse meshes. The modified Richardson extrapolates and their
errors are presented in Table 5. The qualitative features of the results are similar to those
in the previous problem: that is, the modified Richardson extrapolation method yields
substantially more accurate eigenvalues.

Graphs of the eigenfunctions corresponding to the first nine eigenvalues are presented
in Figure 1. The lower order modes, Modes 1 to $, are trapped near the wall, z=10,




while the higher order modes, modes 6 to 9, are oscillatory throughout the interval and

Comparison of eigenvalues for Munk profile with and

ACOUSTIC NORMAL MODES FOR SHEAR FLOWS

TABLE 3

without a shear flow

J No flow Flow Change
I 0-0166895 0-0166839 0-0000056
2 0-016565% 0-0165612 0-0000046
3 0-0164497 0-0164459 0-0000038
4 0-0163414 0-0163385 0-0000030
5 0-0162472 0-0162450 0-0000023
6 0-0161474 00161447 0-0000027
7 0-0160112 0-0160081 0-0000031
8 0-0158424 0-0158390 0-0000033
9 0-0156442 0-0156408 0-0000034
10 0-05470 0-0154135 00000035
1 0-0151599 0-0151564 0-0000035
12 0-0148716 0-0148680 0-0000036
13 0-0145502 0-0145466 0-0000036
14 0-0141936 0-0141900 0-0000036
15 00137991 0-0137955 0-0000036
16 0-0133635 0-0133599 0-0000036
17 0-0128824 0-0128788 §-0000036
18 0-0123507 0-0123471 0-0000036
19 0-0117616 0-0117579 0-0000036
20 00111057 0-0111021 0-0000036
21 0-0103706 0-0103670 0-0000026
22 0-0095380 0-0095343 0-0000036
23 0-0085794 0-0085757 0-0000026
24 0-0074463 0-0074427 0-0000036
25 0-0060416 0-0060379 0-0000036
26 0-0040943 0-0040%07 0-0000036

hence convey energy to the surface, z=10.

In addition, the method has been applied to the aeroacoustic problem with a Mach
number of 0-t. The first six modes are graphed in Figure 2. The shear flow is less effective

TaBLE 4(a)

Numerical eigenvalues K;(p) = k;( p) x 107! for the aeroacoustic problem

m
t-.."-{z

29
0-1130
K1)

34
0-0600
K,(2)

43
0-0640
K,(3)

55
0-0780
K;(4)

_Refined”
R(1,2,...,7)

O 00~ O Bt b

—

2-9791779468
2:6652423256
2-4622206634
2:3007170774
2-1574305739
1:9976917863
1-7931851971
1-5320342062
1-1987109449
0-7561207089

29786591353
2-6644571992
2-4603812904
2-2988227138
2-1546426081
1-9925412298
{-7832139036
1-5132312801
1-1635112361
0-6866601449

2-9781475969
2-6636822541
2-4595613407
2-2969593731
1-1518887423
1-9874066359
1-773192%9427
1-4941512707
1:1272494549
0-6125803937

2-9778198593
2:6631851931
2-4587157468%
2:2957674391
2:1501207769
1-9840851629
1-7666673184
1-4816262128
1-1031370029
0-5617222139

2-9773107935
2:6624120617
2-4574020786
2-2939183407
2-1473676297
1-9788730950
1-7563582522
1-4616762399
1-0642062148
0-4765135425

B P P

e

P e

P R P S
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Modified extrapolations I&j(p, ..

TABLE 4(b)
Errors in numerical eigenvalues e p)= k;—k;(p) for the aeroacoustic
problem
N= 29 34 43 55
ET= 0-1130 0-0600 0-0640 0-0780
j e(1) ,(2) £(3) e;(4)
! 1 -1-9E-03 -1-3E-02 -8-4E-03 ~5.1E-03
:; 2 —-2-8E-02 -2-0E-02 -1-3E-02 -7-7E-03
! 3 —4-8E-02 —3-5E-02 -22E-02 ~-1-3E-02
] 4 —6-8E—02 —4-9E—-02 -3-0E—02 ~1-8E-02
! ] ~1-0E - 01 —7-3E-02 —4.5E-02 -2-8E~02
f 6 ~1'9E-01 -1-4E-01 -8-5E-02 -5.2E-02
. 7 -3.7E-01 -2-7E-01 -1-7E~-01 -1-0E-01
: & ~7-0E-01 -5.2E-01 -3-2E-01 ~2-0E-01
, 9 —1-3E+00 ~9-9E - 01 —6-3E-01 —~3-9E-01
g 10 —2:8E+00 -2-1E+00 -1-4E+00 -8-5E-01
%|
| TABLE 5(a)

g = E,-(p, ..., g)x107" for the aeroacoustic problem

5 N = 29 34 43 55

: ET= 0-1130 0-0600 0-0640 00780 _“Refined"”

‘_ j K (1) K(1,2) £1,2,3) 0,234  R0,2...7
! 1 2-9791769857 2-9772739907 2-9773112352 2-9773107932 2-9773107935
i 2 2-6651637893 2-6623609853 2-6624133592 2-6624120366 2-6624120617
. 3 2-4616036823 2-4573042366 2-4574046920 2-4574020189 2:4574020786
! 4 2-2982788039 2-2937558728 2-2939228992 22939182293 2-2939183407
': 5 2-1504915721 2-1471533640 2:1473748036 2-1473674436 2-1473676297
| 6 1-9813120748 1-9786146653 1-9788836762 1-9788727919 1:9788730950
! 7 1-7586553227 1-7560117723 1-7563755504 1-7563577060 1-7563582522
i 8 1-4637175150 1-4612162097 1-4617039503 1-4616752223 1-4616762399
! 9 1-0655171180 1-0635790669 1-0642442928 1-0642042047 1-0642062148
; 10 0-4749251844  0-4751279471  .0-4764553170  0-4764974279 0-4765135425
!

; TasLE 5(b)

; Errors in modified extrapolations &(p, ..., ay=k-k(p,..., q) for the
| aeroacoustic problem

|

i N= 29 34 43

" ET= 0-1130 0-0600 0-0640 0-0780

i J & 8(1,2) £(1,2,3) (1,2,3,4)

! 1 —1-9E—02 3.7E-04 —4-4E~ 06 33E-09

. 2 —-2:8E-02 5 1E~04 ~1-3E-05 2-5E-~-07
- 3 —4-2E—-Q2 9-8E—04 —2-6E—-05 6-0E-07

1 4 -4-4E-02 1-6E—03 —4.6E—05 1-1E-06

I 5 ~3.1E-02 21E-03 -7-2E-05 1.9E-06

6 -2-4E—-02 26E-03 -1-1E-04 3-0E - 06

' 7 —-2-3E-02 3-5E-03 -1-7E-04 5-5E-06

W 8 —-2.0E-02 4.6E-03 —2-8E-04 1-:0E-05

3 9 -1-3E-02 6 3E-03 -3-8E-04 2:0E-05

] 10 1:6E-02 1-4E-02 5-8E—04 1-6E-04
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Figure 1. Graphs of the first nine modes for the acroacoustic problem with M =1,

101

- e

L

2

o

Tt

PR SN bt



Toie o ome e ialaie - w T

fef X J SRS NI LI,

40

ok-1 o

M. B. PORTER AND E. L. REISS

Mode 7

ce
-0-5)

_‘OL

&0

02 04 06

Il - /\ /I
Q8 10

Mode B

_05 -

-0+

¢5

c-0

1 1 L /\ [
oz 04 oX] 0B 10
z
Maode 9

-05

_10

1 I N
Q2 o4 ce o8 10
z

Figure 1. (cons.)

Mode 1

05+

joRs)

02 04 0% o8 TO

Maode 2

_05._

Mode 3

00
-0 5

1ol

Q2 0-4 086 08 10

Figure 2. Graphs of the first six modes for the aeroacoustic problem with M =75
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Figure 2. (cont.)

n forming an acoustic duct at this lower Mach number, as can be observed by comparing
Sigures 1 and 2. Thus, more energy is carsied to the free surface z =0 at lower values of
he Mach number for specfic modes.
With suitable modifications the present method can be extended to study acoustic
sropagation in ducts where the rigid boundary at z = D can be replaced by an impedance
:ondition or by an elastic layer, as has been demonstrated in reference [8].
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APPENDIX

In this Appendix certain mathematical results are.established that are employed in
obtaining the isolating intervals for the eigenvalues corresponding to the coarsest mesh
size. Only subsonic flows are considered, so that max (u°(z)) <min (¢(z)). The required
upper bound for the largest eigenvalue is obtained by application of the following
Theorem.

Theorem 1. The real eigenvalues k of equation (2.3) satisfy either
w/k>mings,«p (uN(2)+¢(2)) or w/k<maxes,<p(¥¥(z)—c(z)). (Al

Proof. Multiply both sides of the differential equation {2.3) by p and integrate the result
from z =0to z = D. Integration by parts is valid, as one can show. Then using the boundary
conditions one gets

D

o
-—J‘ (p'(z))zja(z)dz-i-J‘ b(z)(p(z)) dz=0. _'(AZ)

0 1}

Since a(z)}=0 it follows from equation (A2) that there exists an interval in (0, D). in
which b(z} > Q. Therefore, in this interval one has, from the definition of b(z) in equation
(2.4), that ¢* < {w/k—u®?, from which the desired result follows.
The theorem states that the bound on the phase velocity is increased or decreased by
the flow velocity, depending on whether the wave is traveling upstream or downstream.
The index function which gives the zero-counting procedure to determine the isolating
intervals is provided by the second theorem.

Theorem 2. For w >0 and k>0, the number of eigenvalues greater than k is obtained
by integrating equation (2.3) with the initial conditions p(0)=0, p'(0) =1, and then
calculating the index function I'(k), which is defined by

Lif p(D)p'(D) <0

I{k)=the number of zeros of p(z) in (0, D +{
( PR BT o,ie p(D)p(D) 20

Lo
To prove this theorem one first requires the following oscillation results for the solutions
of equation (2.3).
Lemma 1. Let p(z) and P(z) satisfy the initial value problems
{(p'/a)y+bp=0, p{0)=0, p(O)=1,
(P'/AY+BP=0, . P(0)=0, P'(0) =1, (Ad)

in which the continuous coefficients satisfy the conditions A>a>0and B>b for all =
The Prufer variables, r(z}, R(z), t(z) and T{z) are defined by

plz)=r(z) sin 1(z), p'(z)=r(z)cos 1(z),
P(z) = R(z) sin T(z), P'(z)= R(z) cos T(z). (AS)
Then the phases satisfy the inequality
T(z)>t{(z), forz>0. (A6)

Since this lemma is a trivial extension of an existing oscillation theorem, {see, e.2.
reference [9]) we omit the proof. It can also be shown that r(z) is positive and so the
zeros of p(z) {p'(z)) occur when the phase function, 4, is an odd (even) muttiple of =/
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Proof of Theorem 2. One first can establish that I{knax) =0, where k.., is the upper
bound on the eigenvalues implied by Theorem 1. After multiplying equation (2.3) by p
and integrating from 0 to z one obtains

I

Z—Jz(p’)z/a(z)dz+J pib(z)dz=0. (A7)

i}

p(z)p'(z}/ a(z)

When k = kax b{(2) is negative and so one must have p(Z)p'{z)> 0. Hence, p has no zeros
and I(Kkmax) = 0. As k is decreased, a(z: k) and b(z; k) both increase. It follows from the
lemma that the phase function t{z: k) increases as k is decreased. Since the eigenvalues
occur at points where ¢(d; k) is an odd multiple of w/2 and 0< (D ko) < /2, the
number of eigenvalues greater than k is obtained as the largest n for which ¢{(D; k} >
(2n—1)7/2. Thus, the problem of determining the number of eigenvalues less than k is
reduced to that of determining the number of rotations in the phase function. As the
phase function is not to be computed explicitly, one needs to be able to count rotations
in p(z). If for some zpt =mm then

t'(z0) = al2) cos® (mm)+ b(z,) sin® (mm)} = a(z,) > 0. (AB)

This implies that 1{z) can cross through a line r = mm at most once during the'integration
from z=0. Thus m, the number of whole multiples of = contained in 1{D), can be
obtained by counting the zeros of p(z). Now, if 2mm/2< (D k)= (2m+1)mw/2, then n,
the number of eigenvalues greater than k, will be equalto m, butif 2m + Dr/2<i(D k)<
(2m+2)=/2, then n is equal to m + 1. Clearly, the former case occurs when p(D)p'(D}>0
and the latter when p(D)p'(D) <0, thus establishing the theorem. This theorem may be
extended to other quadrants of the w —k plane with minor modifications.

To show the relationship between the index function of Theorem 2 and the standard
Sturm sequence procedure, one can observe that a characteristic function for the matrix
may be obtained by setting p, =1 and using the first N —1 of the difference equations
(3.1) to recursively generate p, i=1,..., N. The residual r(k), which is defined by
r(k)=2a3 2P T (—2an 1,2+ h*by)pa is then a characteristic function of A. This
process has an obvious interpretation as an integration of system (2.3)-(2.5); thus the
computation of r(k) simultaneously generates the information required to compute the
index function of Theorem 2. In addition, it is easy to verify that the p, differ {rom the
principal minors of —A by products of the squares of the off-diagonal elements [6]. It
follows that the index function gives the number of sign changes in the principal minors
of —A, and that the present method is a generalization of the Sturm sequence method
previously employed [3).

t A characteristic function of A(k) is a function with zeras at the eigenvalues of A.
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