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We preseﬁt a fast finite-difference method for computing the normal modes for three
different oceanic scenarios. The first model we treat is the standard modal equation

for a stratified ocean of constant depth.

The ocean subbottom is modeled as a com-

pletely rigid medium and the ocean surface a perfect pressure release. This leads

to a well-known eigenvalue problem of Sturm-Liouville form for the normal modes.

Tn the second model we add to this problem a laminar shear flow parallel to the

ocean bottom which yields an interesting second-order differential eigenvalue prcblen

in which the eigenvalue appears nonlinearly.

In the third model, we treat a two

medium problem with the standard differential equation in the ocean coupled to a
fourth-order differential equation governing elastic wave propagation in the ocean
subbottom. The ocean subbottom is incorporated into the first model by a numerically
computed impedance condition at the ocean-subottom interface. Finally, we present
results which illustrate the speed and accuracy of the method.

1. TINTRODUCTION

The method of normal modes is a standard procedure
for solving acoustic propagation problems in
stratified oceans. The horizontal propagation
numbers k:, J = 1,2,..., and the corresponding
depth-dependent normal modes pi(z) are then

the eigenvalues and eigenfunctlons, respec-
tively, of an eigenvalue problem for an ordinary
differential equation in the z-direction. The
precise structure of this eigenvalue problem
depends on the specific ocean acoustic problem
under study and hence its corresponding mathemat-
ical model. Since the coefficients in the normal
mode equation are functions of z, the eigenvalue
problem is explicitly solvable only for special
stratifications. 1In general, numerical methods
are employed to solve the problem approximately.
The numerical methods must solve the eigenvalue
problem not just quickly but accurately, because
the numerical errors in the eigenvalues appear as
phase shifts in the range dependence of the
acoustic field. Specifically, the phase shifts
are proportional to the products of the errors
and the range variable. Thus, for long-range

propagation the errors in ky will seriously
degrade the normal mode representation of the
solution. The speed of computation is essential,
particularly for "high" frequency propagation in
"deep" oceans because the number of propagating
modes required to represent the acoustic field
may be large.

In [1-3] we presented finite-difference numerical
methods for solving the normal mode eigenvalue
problems for a sequence of ocean acoustic propa-
gation problems of increasing complexity. The
numerical methods are suitably modified as the
complexity of the problem increases. Reference
to previous numerical studies of normal modes
and the details of our numerical procedures are
given in [1-3].

The standard acoustic propagation problem for a
stratified, stationary ocean of uniform depth is
the simplest model that we considered [1]. The
ocean's surface {z=0) and bottom (z=D) were

assumed to be free and rigid, respectively,

where z is the depth variable. Then the normal
mode eigenvalue problem for the eigenvalues kg,
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Ko,..., and the corresponding eigenfunctions
p1(z),po(z),... is given by

p" + u2/c2(z) - ¥2];=0 , 0<z<D (1.1a)
pl0o)=0 , (1.1b)
p'(D)=0 -. (1.1c)

Here, c(z) is the specified sound speed and , 1is
the specified angular frequency of the time-
periodic source., The numerical methods that we
employed to solve (1.1) are briefly summarized
in Section 2 of this paper.

If the acoustic propagation problem for the
stratified ocean of uniform depth is modified by
the presence of unidirectional (x-direction)
laminar shear flow with velocity U(z), then the
normal mode eigenvalue problem is given by [2],

[p'/alz)]* + blz)p=0 , 0<z<D ; (1.2a)
plo) =0 , (1.2b)

p'(D)/a(Dp) = 0 . (1.2¢)

The functions a{z) and b(z) are defined by

alz) = [ 4 - xu(z) )2
(1.24)
v(z) = c'z(z) + kg/a(z) .

The problem (1.2) is not a standard Sturm-
Liouville eigenvalue problem since the eigenvalue
parameter k appears nonlinearly. The necessary
modi fications in the numerical procedures that
were used to solve (1.1) are discussed in {2].

1f the medium is stationary, so that U(z) = 0,
then (1.2) is reduced to (1.1).

For "low" frequency propagation in "shallow"
oceans some of the acoustic energy from the
source may interact significantly with the ocean
subbottom. In (3], we have modeled the ocean
subbottom by a stratified elastic layer resting
on a rigid half-space. This half-space corre-
sponds to relatively rigid basement rock. Then
the normal mode eigenvalue problem for this
coupled seismo-acoustic model consists of simul-
taneously solving the acoustic normal mode egua-
tion (1l.1a) with surface condition (1.1b) and
the elastic normal mode equations for the four-
dimensional elastic vector sﬂz), which we write
as (L],

r' = Er . (1.3)

Here r is the vector with components ry, rp, r3,
r), which are defined by

1}
£

ik!’l =u s To
ikr3 T Tzx 2 Th T 122 (1.L)

where the quantities u(z), w(z), ¢,4(z) and

TZZ(Z) are proportional to the x-displacement,
the z-displacement, the shear stress and the
normal stress, respectively in the elastic layer.
In addition, E is the Lxl matrix defined by

0 -1 1/(pc§§ 0
k%, (2) 0 0 l/(pcg)
E = %% (2)-py2 0 0 - (z) {{1.4p)
0 o0 @ k2 0

where the quantities y(z) and niz) are defined by

alz) = [c2-2¢2]/c?, ;= ¢21242(2)}. (Ll.kc)
S

P P P

Here, cp(z) and cg(z) are the P ani 3 wave speeds
in the elastic bottom and o is its density. The
system must be solved subject to the rigid condi-
tions,

ri(Dy) = ro(Dy) =0 , (1.53)

at the basement and the interfacial conditions,

wry(d) = p'(D)

r3(D) 0, (1.5v)

I‘h(D) = —p(D) N

at the ocean bottom. The eigenvalue problen

is: for specified y, o, clz), cplz), and cqlz)
determine the values of k for which (1l.la,b),
(1.3)-(1.5) have non-trivial solations. The
numerical methods employed in [1' to solve (1.1),
require substantial modifications to solve the
coupled acoustic-elastic eigenvalue problen as
described in [3]. Several applizations of the
methods are also given in [3].

2. SUMMARY CF THE NUMERICAL METHOD FOR THE
STANDARD NORMAL MODE PROBLEM (1.1)

We employ the standard three-point difference
approximation to the second derivative in (l.la)
and the centered difference approximation to the
first derivative in (1l.lc) to reduce (1.1) to an
algebraic eigenvalue problem with a tridiagonal
matrix. For a fixed mesh width h; we then use
the Sturm sequence method [5] to obtain isolating
intervals for all the eigenvalues of the alze-
braic problem, corresponding to propagating
modes. The isolating intervals provide initial
estimates for each eigenvalue. More accurate
approximations of each eigenvalue are then ob-
tained by solving the characteristic equation

by Brent's method [A] which combines bisection,
linear interpolation and inverse quadratic inter-
polation. Convergence is then guaranteed to the
isolated eigenvalue. Once the eigenvalues have
been obtained, the corresponding eigenvectors

are computed by inverse iteration.



Numerical Models for Ocean Acoustic Modes 245

We then employ the standard Richardson extrapola-
tion method [7] to obtain improved estimates of
the eigenvalues of (l.1l) from the numerical
eigenvalues of the algebraic problem. That is,
the algebraic problem is solved for a sequence

of successively finer meshes hy, ho, +e., Dy
Richardson approximations ars then obtained by
extrapolating the error to zero mesh width.
Clearly the Richardson approximations depend on
the selected values of hj,ho,...,hy. The
extrapolation is based on the fact that the
difference approximation employed yields an error
which 1s a series in even powers of h., Hence,
the extrapolation is in polynomials in even
powers of h. Furthermore, we note that there
exists a simple recursion for computing the
Richardson extrapolates. Since the details of
this procedure are given in {1} and references
therein, we do not repeat them here.

Richardson extrapolation may also be applied to
methods based on higher-order difference approxi-

mations such as the fourth-order Numerov's differ-

ence scheme. However, we have found that the
lower-order difference scheme employed in [1] is
more efficient as well as simpler and more easily
generalized to wore complicated problems. We
have also experimented with modifications of the
polynomial extrapolation and obtained improved
results with an alternate extrapolation procedure
which is described in [1].

Once the eigenvalue problem is solved at the
first mesh, these eigenvalues provide excellent
guesses to the eigenvalues at a refined mesh.
Inde=d, one may also employ extrapolation to
produce an initial guess at the refined mesh and
this is the procedure we have employed. The use
of these coarse-mesh eigenvalues for a finer
mesh yields extremely good initial guesses and
allows us to bypass the root isolation procedure.
For the refined meshes, this leads us to replace
the Brent root finder with an alternate which
does not require an isolating interval. We have
employed Newton's method as the root finder for
our calculations.

3. RESULTS

In {1] we applied the method to several pro-
blems to demonstrate its convergence properties,
speed, accuracy and versatility. For example,
we considered a deep ocean with a Munk sound
speed profile [8] specified vy,

w = 20n/s . D = 5000m ,

c(x) = 1500{1-0.00737(x-1+e"*)Im/s ,

x = 2(z-1300)/1300 .
In Table la we present selected eigenvalues
obtained at several different mesh widths given

by h = D/N and with N indicated on the top row.
The row labeled ET indicates the execution time

in seconds on a VAX 11/750 required to compute
all of the propagating modes for that particular
mesh width., We have employed the notation Kj(p)
to denote the scaled jth eigenvalue for the mesh
width hp.

Qualitative features of the method are indicated
in Table 1b in whiéh we have displayed the errors
in each of these eigenvalues. For these calcula-
tions we employed several more refined meshes to
obtain reference eigenvalues which are exact to
machine precision. There are two trends: the
error for a fixed mesh increases with the mode
number j, reflecting a greater discretization
error for those modes with greater oscillation;
the error decreases as the mesh width de:zreases.
In Table 2a we have employed Richardson extrapo-
lation with the data of Table la to obtain the
improved approximations of the eigenvalues

given in Tadle 2a. The first colurmn is the same
as in Table la. BSubsequent columns represent
the results of quadratic, quartic, etc. molyno-
mial extrapolations. The effective computation
time for each column is obtained by taking the
sum of all the execution times for that column
and all columns to its left. 1In Table 2a we
present errors for these eigenvalues. Fach
subsequent extrapolation reduces the error by 2
to 3 orders of magnitude.

REFERENCES

[1] Porter, M.B. and Reiss, E.L., A Numerical
Method for Ocean-Acoustic Normal Modes, J.
Acous. Soc. Amer., T6:2LL.252, (1984).

[2] Porter, M.B. and Reiss, E.L., A Numerical
Method for Acoustic Normal Modes in Shear
Flows, J. Sound and Vib., 100:91-105, (1985).

(3] Porter, M.B. and Reiss, E.L., A Numerical
Method for Bottom Interacting Acoustic Normal
Modes, J. Acous. Soc. Amer., T7:1760-1767,
(1985).

[4] Axi, K. and Richards, P.G., "Quantitative
Seismology: Theory and Methods," W.H. Freeman,
San Francisco, 1980.

{5] Wilkinson, J.H., "The Algebraic Eigenvalue
Problem," Clarendon, Oxford, (1965).

[6] Brent, R.P., An Algorithm with Guaranteed
Convergence for Finding a Zero of a Function,
Comp. J. 1h:h20-425, (1971).

[7T] Dahlquist, G. and Bjorck, A., "Numerical
Methods," Prentice-Hall, Englewood Cliffs,
NT, (197h4).

[8] Munk, W.H., Sound Shannel in an Exponeantially
Stratified Ocean with Applications to SOFAR,
J. Acous. Soc. Amer. 55:220-226, (1974).



246

M.B. Porter and E.L. Reiss

Table la. Numerical eigenvalues X2{p)= lOOOxki(p) for the Munk profile.
J

N= 193 231 289 366

ET= 2.7 1.9 1.5 1.9

J K2(1) : K2(2) K2(3) K2 (4) "Exact"

J J J J

1 1.7491072356 1.7L91068549 1.7491065372 1.7491063255 1.7491059750
6 1.6993426880 1.6923252812 1.6993107611 1.69930109L5 1.699285096%
11 1.6559087989 1.A553577581 1.65581522L5 1.6557869303 1.6557L01L30
16. 1.611L4541597 1.6112937225 1.611159736A 1.6110704597 1.610922572L
21 1.5Lk3092L249 1.5L25195951 1.5Lk222L2681 1.5419606260 1.541523L989
26 1.455125L442 1.4540118164 1.4530795099 1.h4524571423 1.4514241517
31 1.3487793758 1.3L65211555 1.3446278213 1.343362L970 1.3412598454
36 1.22L9371286 1.220%224340 1.2173667722 1.2150543857 1.2112065A99
41 1.08Lh9OTL83 1.07756832L7 1.0717434893 1.06784010k1 1.061334R82L
46  0.928L0L3L2A 0.917554937L 0.9082217833 0.90202L3151 0.8916780L90
51  0.757729L4166 0.7812L02724 0.7273023517 0.7179300150 0.7022535014
56  0.5736063090 0.5L97L90L6AL 0.52952962R82 0.5159062520 0.4930711100
61 0.3772603L06 0.3433725690 0.315L4938323 0.2963311179 0.2A41348093
66  0.1699954891 0.12L5563951 0.0858309888 0.059A12R139 0.0154543453

Table 1b. Errors in numerical eigenvalues ej(p) = %2 - kg(p) for the Munk profile.
J J

J eJ(l) ej(2) ej(3) e'j(ls)

1 -1.3E-09 -8.8E.10 ~5.6E-10 -3.5E-10
6 -5.8E-08 -L4.,7E-08 -2.AE-08 -1.AE-08
11 ~1.7TE-07 -1.2E-07 -7.5E-08 ~L.7TE-08
16 -5.3E-07 -3.7E-07 -2.4E-0T -1.5E-07
21 ~1.6E-06 -1.1E-06 -7.0E-07 -4, LE-07
26 -3.7E-06 —2.AE-06 -1.7E-06 -1.0E-06
31 -T7.5E-06 -5.3E-06 -3.4E-06 -2.1E-05
36 -1.L4E-05 -9.hE-06 —6.2E-06h -3.8E-0%
41 -2.3E-05 -1.hE-05 -1.0E-05 -h.5E-06
46 -3.7E-0S -2.5E-05 -1.7E-05 -1.0E-05
51 -5.5E-05 -3.9E-05 -2.5E-05 -1.6E-05
56 -8.1E-05 -5.7E-05 -3.6E-05 -2.3E-05
61 -1.1E-0k -B.0E-05 -5.1E-05 -3.2E-05
66 ~1.5E-0bL ~1.1E-0k ~-T.0E-05 -L.LE-05
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Table 2a. Standard extrapolations K?(l,...,p)=1000xk§(1,...,p) for the Munk pro’ile.
J

N= 193 231 289 366

ET= 2.7 1.9 1.5 1.9

3 K2(1) K2(1,2) K2(1,2,3) K2(1,2,3,L) "Exact"

J J J J

1 1.7491072356 1.7L91059748 1.7491059750 1.7491059750 1.7491059750
6 1.6993426880 1.6692850389 1.6992850969 1.6992850968 1.6992850968
11 1.6559087989 1.655T397577 1.6557L01LL35 1.6557L01L30 1.655T7L01L30
16  1.61145L1597 1.6109228110 1.A109225751 1.610922572k 1.610922572k
21 1.543092L249 1.5L15264696 1.5415235108 1.5415234989 1.5415234989
26 1.455125LL42 1.451k3724L1 1.hs51h2h1go7 1.4514241516 1.451h241517
31 1.3L487793758 1.3L1300L226 1.3L4125697L1 1.3412598451 1.3412598L54
36 1.22U9371286 1.2113097577 1.2112069378 1.2112065691 1.2112065699
L1 1.084L507L83 1.06A15645069 1.0613358k429 1.0613348810 1.0613348824
46 0.928L0L3L428 0.8921412333 0.8916803509 0.8916780473 9.8916780L490
51 0.757729L4166 0.7031193603 0.7022586115 0.7022535010 0.702253501k
56  0.5736063090 0.4945939328 0.4930817189 0.4930711162 2.4930711100
61 0.3772603L06 0.26668L40695 0.26L41575877 0.2641368357 7.2641368093
66  0.169995u4891 0.0195398145 0.0154930307 0.015L5L4198 0.0154543458

Table 2b. Errors in standard extrapolations ej(l,.

..p) = X2 - k3(1,..,p) for the Munk profile.
3 J

J e;(1) ey(1,2) ey(1,2,3) e3(1,2,3,4)
1 ~1.3E-09 2,1E-13 -5.4E-17 -5.8E-18
6 -5.8E-08 5.8E-11 -5.TE-1L -6.1E-15
11 -1.7E-07 3.9E-10 ~5.4E-13 L.UE-15
16 -5.3E-07 ~2.4E-10 —2.7E-12 5.9E-15
21 -1.6E-06 -3.0E-09 -1.2E-11 3.LE-1Y
26 -3.7E-06 ~1.3E-08 -4 1E-11 1.2E-13
31 -T.5E-06 ~h.1E-08 -1.3E-10 3.5BE-13
36 -1.4E-05 -1.0E-07 -3.7E-10 T.9E-13
L1 -2.3E-05 -2.3E-07 -9.6E-10 1.4E-12
L6 -3.7E-05 -4 AE-0T -2.3E-09 1.8E-12
51 -5.5E-05 -B.TE-OT ~5.1E-09 4.3E-13
56 -8.1E-05 -1.5E-06 -1.1E-08 -6.2E-12
61 ~1.1E-Ok -2.5E-06 -2.1E-08 -2.6E-11
66 -1.5E-0k -4.1E-06 -3.9E-08 -7.4E-11
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