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A NUMERICAL STUDY OF A ONE-STEP FLAME
IN A ONE-DIMENSIONAL GAS

by

Michael B. Porter

ABSTRACT

We consider a diffusional thermal model of a flame in a one-
dimensional premixed combustible gas. The flame results from a one-
step reaction governed by Arrhenius kinetics. The equations are
solved using a general purpose nonlinear PDE solver which uses the
Galerkin method and B-splines. In particular we concern ourselves
with the character of the flame as a function of the Lewis number.
An analysis by Matkowsky and Olagunju, based on a similar model,
indicated that the Lewis number acts as a bifurcation parameter where
the basic solution is a flame propagating with constant velocity and
the bifurcated solution propagates in an oscillatory fashion.

1. Introduction

The problem of a flame in a one-dimensional premixed combustible gas was
studied analytically by Matkowsky and Olagunju [1]. In their analysis the
flame 1is presumed to result from a one-step reaction governed by Arrhenius
kinetics, i.e.:

Fuel & Product

k = Ze'E/RT

L = preexponential factor
E = activation energy

R = universal gas constant

The equations modelling this flame are derived in a paper by Matkowsky and
Sivashinsky [2]. Among other things they assume small thermal expansion to
decouple the equations of fluid dynamics from the full equations of combustion
theory and large activation energy which implies a narrow reaction zone and
thus allows the Arrhenius reaction term to be replaced by a delta function
multiplied by an appropriate constant.

In order to study the behavior of the flame numerically and to compare our
results with those obtained by Matkowsky and Olagunju, we selected a similar
model in which the Arrhenius reaction term 1is not replaced by the
computationally awkward delta function.



2. The Analytic Results

Matkowsky and Olagunju concluded that the Lewis number, a ratio of the
thermal conductivity to the coefficient of diffusion, acts as a bifurcation

parameter. There is a critical Lewis number, L such that for L < L. the

C’
solution takes the form of a uniformly propagating flame front and at L = L. a
second solution bifurcates supercritically from this basic solution. The
second solution is a flame that pulsates forward. A stability analysis

indicated that for L > L. the basic solution fis unstable and so it was con-
jectured that the oscillatory solution would be observed. The critical Lewis
number is a function of the activation energy, N, and the temperature of the
incoming unburnt fuel, o. Mathematically:

_ 1 1
Lo=1+ 4(1+/’5)<N—(I——7_0 ) + 0<——Z{N(1-c)}>

The amplitude of the pulsations increases with the Lewis number for L
close to LC. Introducing & as a measure of how much L exceeds LC, they
obtained the following formula for the velocity of the flame front as a
function of time:

(2b3 cos 2w.t - 2a, sin 2w t+k)€2

u(t) = -1 - (wo sin w t)e + w 0 3 0

0 0
+ 0(:—:3)

where e ® VN{1-0)(L-L¢) /B2
wg ~ 0.636
a3 ~ -0.142
b3 = 0.3
k = 0.046
Bp = 0.465

I

Q

R

In Figqures 1, 2, and 3 the absolute value of this function is plotted
against time for € = 0.3, 0.6, and 1.0, respectively. The graph of e = 1.0
introduces the possibility of a second major change in the flame behavior from
a singly to a doubly periodic solution. Whether or not this actually occurs,
either through the above mechanism or as a result of a secondary bifurcation,
is an open question.



3. The Numerical Model

As mentioned above, the principle difference between the two models is
that in our model we have preserved the Arrhenius reaction term:

3C 3¢ _ 1 3°C
W+Uﬁ-t-a_><_2--W(C,T)

oT , . 3T _ 2°1 (L-o)H(C.T)
W(C,T) = A(1-0)2n%ce( = 1/T)

x [-20,40] , t>0

Boundary Conditions:

aC

3x x==20 3§‘x=40
oT _ o7 -0
57-x=—20 ERS x=40
Initial Conditions:
klx
l-e x <0
C(x,0) =
0 x>0
‘0+ 1-0) x <0
T(x,0) =
1 x >0

= C(x,t) = concentration of the fuel
= T(x,t) = temperature of the qas
= velocity of the gas

= 40 = activation energy

C
T
u
L = Lewis number
N
A = 0.5 = preexponential factor
(o]

= 0.5 = temperature of incoming unburnt gas



A11 quantities have been nondimensionalized.

The convection velocity, u, functions as a change of coordinates of the
form x' = x-ut, and was chosen to prevent the flame from drifting towards
ejther boundary. The choices of N =40, A= .5, and ¢ = .5, correspond to
some hypothetical gas. The analysis predicts unit flame speed when A = 0.5.
The activation energy, N, was chosen large to match the analysis.

We _draw the reader's attention towards the choice of boundary condi

The initial conditions imply that at t = 0.0 seconds the flame is located
at x = 0.0. For x > 0.0 the concentration is zero and the temperature is
unity, thus the flame has travelled through this zone depleting the fuel and
increasing the temperature. For x < 0.0 the concentration increasss
exponentially to unity and the temperature to o, both values associated with
the fresh combustible mixture.

The constants kl and k2 control the overlap of the initial concentration
and temperature profiles. The overlap is that region where the temperature is
high and the concentration is not negligible. Increasing ki steepens the
concentration profile and therefore increases the overlap. Increasing Ko
steepens the temperature profile which decreases the overlap. If the profiles
overlap too much then the flame will 'over-ignite' resulting in a prolonged
transient period. If there is insufficient overlap then the flame fails to
ignite and the temperature and concentration profiles diffuse nearly inde-
pendently. Our experience has been that, with the exception of the case of
non-ignition, the long-time response is insensitive to the initial conditions.

We solved these equations using a general purpose nonlinear partial
differential equation solver which uses the Galerkin method and B-splines. In
effect this causes a space-variable discretization and reduces the problem to
a system of first order ordinary differential equations in the time
variable. This system is then solved by another software package which



dynamically adjusts the time step to satisfy certain prescribed minimum error
requirements. The PDE solver produces spline coefficients and thus the
solution at discrete user specified time points. It interpolates as necessary
to obtain values between each of the ODE time points.

We chose to use a fourth-order spline approximation and a continuity index
of two. Thus cubic polynomials are strung between each pair of mesh points
and the function and 1its derivative are continuous at the mesh points.
Between each pair of mesh points there are four quadrature points and mesh
points were placed every 0.1 units over the travel of the flame.

4. The Numerical Results

Figure 4 1is a snapshot taken at t = 23.5 seconds from a run with
L =1.5. (The word "seconds" is used throughout to indicate time even though
time has been nondimensionalized.) Species 1 refers to the concentration and
species 2 refers to the temperature (labelled "u-axis"). Note that this is a
blowup, the actual boundaries are located far to the left at x = -20 and to
the right at x = 40.

In Figure 5 a number or profiles are superimposed. A time period of 1.0
to 23.0 seconds is covered in steps of 0.5 seconds during which time the flame
moves from left to right under the influence of a convection velocity u = 1.3
units/second. Relative to the gas the flame is actually travelling from right
to left at about 1.28 units/second. There are no visible pulsations at this
Lewis number (L = 1.5). In Figure 6, the speed of the front is plotted
against time. The speed versus time plots are based on the motion of the
point on the temperature profile where T = 0.85. Other criteria, e.q.,
T = .97, yielded similar plots. Since the flame profiles are available only
at discrete times, typically every 0.5 seconds, the sharp peaks of the flame
speed are often squared off. All speed vs. time plots are adjusted for the
convection velocity and therefore show what the flame speed would have been
had the flame been moving through a stationary gas.

Figure 7 is a run of L = 1.80. This also appears to be below the critical
Lewis number. Pulsations are present but die out exponentially. At L = 1.81
(Figure 8) the pulsations die out with time but the rate of decay is slower.
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In Figure 9, L = 1.83. This is evidently greater than L. as the pulsa-
tions to not attenuate but rather increase in amplitude to some constant
value. This plot is actually composed of two runs, from 0 to 50 seconds and
from 50 to 100 seconds. The latter 50 seconds were run with a smaller time
step in order to follow the sharp peaks better.

At L = 1.85 (Figure 10) the amplitude of the pulsations has increased sig-
nificantly, enough so as to require rescaling the speed axis. The increased
amplitude makes it more difficult to follow the peaks and so the tops vary in
height. A more likely interpolation is shown in Figure 11.

The numerical results are 1in qualitative agreement with the analytic
results. The fact that they do not agree exactly is probably due to the fact
that the analytic formulae are asymptotically valid and were derived under
assumptions we do not satisfy, e.q. N(l-c)2 <<'1 and L-1 << 1, rather than to
the different reaction terms.

Quantitatively, the numerical results suggest LC = 1.82 while usina the
first two terms of the analytic formula:

[ 1 1
L =1+ 4(1+/’5><N<1-o) i O({N(l-o)}2>

yields L. = 1.5. The neglected term may, of course, be large. Indeed
Margolis [3] has obtained an additional term using a different model:

(1 1V 1\3
L.o=1+2(1+/3) (=) + (13+4/3) || + 0|
¢ N> (N) <N)

or, in our variables: (N* = N(1-0)/2)

L o= 1+ 4(1+/T) |~ \+4(13+4f§) 1 >
¢ <N ) <{N<1—o>}2 ’

which yields L. = 1.75.

The analysis predicts sinusoidal pulsations with a period of about 10
seconds. In contrast, our pulsations have more of the character of a relaxa-
tion oscillation and a period of about 5 seconds. Thus we have characterized
the behavior of the flame for 1 < L < 1.85. As mentioned above, these results
were obtained using mesh points every 0.1 units over the travel of the flame.



Fuel for speculation about the behavior of the flame at larger Lewis
numbers is provided by previous results obtained with a larger mesh width.
With mesh points placed every 0.5 units we found that at L = 1.5 a uniformly
propagating flame 1is observed. At L = 1.55 the flame is pulsating and at
L = 1.60 secondary pulsations begin to appear between each of the primary
pulsations as in Figﬁre 3. At L = 1.75 these secondary pulsations are
approximately as large in amplitude as the primary pulsations. Further
increasing L led to more of a spatial structure, see for instance Figure 12 in
which L = 2.1. In the neighborhood of the reaction zone a large bump appears
concurrently with the advance of the flame front and then diffuses. We note
that in reducing the mesh width from 0.5 units down to 0.1 units, the critical
Lewis number moves from approximately 1.5 to 1.8. It has been proposed that

reducing the mesh width shifts the L-spectrum and thus the same kinds of

behavior, including the secondary pulsations, would be seen for 1afqer Lewis
numbers with the refined mesh. It is also possible that the coarse mesh has
artifically induced the secondary pulsations.

It is interesting to compare the mesh width to the width of the reaction
zone. For our purposes, we define the reaction zone by the region between the
two points on the temperature profile where 7 = 976 and T = 1.0. At T = .976
the reaction term, W = eN(1 - I/T), is approximately 1/e. In Figure 4, for
which L = 1.75, this gives a reaction zone 0.14 units wide.

This thin reaction zone and the associated steepness of the concentration
and temperature profiles make necessary a very fine mesh and hence lengthy run
times. To a certain extent, this difficulty can be overcome by concentrating
mesh points only where they are needed, in the neighborhood of the reaction
zone. This can be indirectly accomplished by introducing a stretching of the
spatial coordinates as suggested by Butler and O'Rourke [4]. 1In our scheme we
are able to freely position the mesh points but still a large number of mesh
points are needed since the reaction zone propagates through space. In this
regard, it is very useful to select a convection velocity that stabilizes the
position of the flame. A pulsating flame can thus be made to oscillate in
place, but the amplitude of the pulsations poses a lower limit on how much the
flame travel can be reduced.

Finally, we refer the reader to the work of Grishin, Bertsun, and Agranat
[5] and Golovichev, Grishin, Agranat and Bertsun [6]. In [5] the authors used

11
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a different numerical scheme and model to show the existence of pulsations.
Their results show a more gradual increase in amplitude and a marked increase
in the freguency of pulsations with increasing Lewis number. Basically, we
have seen the same behavior over a smaller spectrum of Lewis numbers, though
it is not clear from our graphs that the frequency increases with the Lewis
number. In [6] a Bromine-Hydrogen flame was simulated numerically with

choices of pressure, temperature, etc. that yielded pulsations.
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Figure 1
Analytical prediction of flame front speed for € =

0.5
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Figure 2
Analytical prediction of flame front speed for £ =
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Figure 3
Analytical prediction of flame front speed for € = 1.0
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A smooth fit of the flame front speed for L = 1.85
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Successive flame profiles from a course mesh run
with L = 2.1



