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A NOTE ON THE RELATIONSHIP BETWEEN FINITE-DIFFERENCE AND
SHOOTING METHODS FOR ODE EIGENVALUE PROBLEMS*
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Dedicated to Herbert B. Keller on the occasion of his 60th birthday

Abstract. Finite-difference methods and shooting methods are two standard classes of techniques for
solving ordinary differential equation eigenvalue problems. We first show that a Sturm sequence method
often used for solving the finite-difference eigenvalue problem may be interpreted in the shooting framework.
Then we find that the Sturm sequence procedure is easily extended to more complicated problems. This
enables the shooting method to guarantee convergence to specified subsets of the modes of the problem
without the usual requirement of an initial guess for the eigenvalues. :
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1. Introduction. Finite-difference methods and shooting methods are two standard
classes of techniques for the numerical determination of the eigenvalues and eigenfunc-
tions of two-point boundary value problems for ordinary differential equations [1]. A
typical problem is obtained from classical ocean acoustic propagation of time-periodic
waves [2]. The horizontal propagation numbers A; and the corresponding modes @;(z)
are the eigenvalues and eigenfunctions of

(1.1a) ¢"+{k*n*(z)— A} =0, 0<z<l1,
(1.1b) ¢(0)=¢'(1)=0.

In (1.1), n*(z) is the index of refraction of the stratified ocean and k is a dimensionless
propagation number that depends on the frequency of the source and the depth of the
ocean. The boundary conditions in (1.1) imply that the ocean’s surface z =0 is pressure
free, and that the ocean’s bottom z =1 is rigid.

A finite-difference formulation is obtained by dividing the interval 0<z <1 into
subintervals by the mesh points z,, z,, * - -, zy. For an equally spaced mesh of width
h=1/N, the mesh points are given by z;=ih,i=1,2,---, N. Then the continuous
eigenvalue problem is approximated by an algebraic eigenvalue problem

(1.2) Ad=pd, p=A’H,

where the N X N matrix A is tridiagonal if the second derivative in (1.1a) is approxi-
mated by the standard three-point difference approximation and the first derivative
on (1.1b) by a two-point centered difference approximation. The N-dimensional
vectors ¢, with components ¢,, ¢, - - *, ¢, that are obtained from (1.2) are approxi-
mations to the eigenfunctions of (1.1) evaluated at the mesh points. Numerically
determined eigenvalues y; and eigenvectors &; of the algebraic problem (1.2) yield
approximations to eigenvalues and eigenfunctions of the continuous problem (1.1).
The Sturm sequence method [3], [4] is a widely used procedure, see, for example
[5], for isolating and refining the eigenvalues of (1.2). We denote the Sturm sequence
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and ¢’ at the interface z=1, we get

(33) A=Sm -6/, B=S60)+6 W/

It follows from (3.2) that for A to be an eigenvalue, B=0. However, for an arbitrary
A, not necessarily in the spectrum, B will not vanish in general.

It is easy to show from (3.2) and (3.3) that ¢,(z) vanishes, at most, once in the
interval (1, ). Therefore, the number of zeros of ¢,(z) in that interval is determined
by comparing the signs of ¢,(z) at the endpoints. Thus, we have

(3.4) sgn ¢(0) =sgn (B) =sgn (¢(1)+¢'(1)/v),
and so, =

I(A) = the number of zeros of ¢(z) in (0,1]

{1 if ¢ (D[8,(1)+ 811}/ 7] <0,
Lo if 418, (1) + ¢5(1)/ v 20.

(3.5)

An impedance condition is slightly simpler if we reverse the order of integration and
shoot from z = oo to z = 0. Then the solution in (1, ) satisfying the boundary condition
at z= is

(3-6) dp(z) =™

This function obviously has no zeros in (1, ). The integration is then continued
numerically from z=1 to z=0 and the index function is T

(3.7) I(A) = the number of zeros of ¢,(z) in (0, 11.

The above analysis is applicable to a wide class of problems. We have, for instance,
developed a similar index function for optical fiber problems. There, an impedance
condition is obtained at the interface of the fiber and an infinite cladding z> 1.

4. Conclusions. We have shown’that the Sturm sequence method, which is widely

used for solving algebraic eigenvalue problems, can be interpreted as a shooting-

technique for the differential eigenvalue problem. We have also demonstrated that the
bisection technique for shooting methods is generalizable to more complicated prob-
lems which have not yet been studied by traditional methods for algebraic eigenvalue
problems. The extension of these techniques to higher-order problems is an important
area for further research. For example, fourth-order problems arise in coupling the
traditional ocean acoustic equations to an elastic ocean bottom and in fiber optics
when the fourth-order vector wave formulation is used. For higher-order problems it
is not clear what function is appropriate for zero counting, though in electromagnetics
it has been suggested that the number of zeros in the Poynting vector is incremented
with each successive mode.

Note added in proof. A similar procedure was considered in [10] for a class of
nonlinear boundary value problems. However, nonlinear eigenvalue problems, infinite
domains, or interpretations of Sturm’s procedure for finite difference methods, which
have been discussed in this paper, were not considered in [10].
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corresponding to the matrix uI — A by S, Sz, - - -, Sx. Then S.(w) is the ith principal
minor of this matrix, so that Sy () is its characteristic polynomial. In addition, for a
fixed value of u, the number of sign changes in the sequence {S;(w)} is equal to the
number of eigenvalues greater than w (where zeros in the sequence are deleted). The
sign-change property provides a simple bisection procedure for “slicing” the spectrum
into isolating intervals which contain exactly one eigenvalue. The bisection procedure
can be continued, or a faster root-finder such as Brent’s method, can be employed to
determine zeros of the characteristic polynomial Sy (s ). The root-finder should guaran-
tee convergence to the isolated root.

An additional property of the Sturm sequence is that if u = p; is an eigenvalue,
then ¢; = S;,i=1,- - -, N, so that the principal minors generate the components of the
eigenvectors. However, we observe that inverse iteration [3], [4] is usually employed
to evaluate the eigenvectors once the eigenvalues have been determined.

In shooting methods to solve (1.1) the boundary conditions (1.1b) are replaced
by initial conditions such as
(1.3) $(0)=0, ¢'(0)=a,
where a is an arbitrary nonzero constant. Then for a specified value of A, which should
be a good estimate of the desired eigenvalue A;, the initial value problem (1.1a) and
(1.3) is numerically integrated to obtain the function ¢(z; A). Then the estimate of A
is improved by using a root-finder such as Newton’s method, until the terminal condition
¢'(1; A) =0 is satisfied to within some tolerance. This requires a sequence of shots
with the corresponding values of A converging to a limit, which is the shooting method
approximation to the eigenvalue. The shooting method is easy to implement because
accurate and efficient numerical integrators and root-finders are frequently available
in subroutine libraries. However, successful applications of the method usually require
accurate initial guesses for the eigenvalues, which may not be available. In addition,
applications of the method may be limited by instabilities that occur when integrating
into intervals in which the solution decays [6]. These instabilities may be alleviated in
some cases by employing parallel shooting [1].

However, as we discuss in this paper, some aspects of the finite-difference and
shooting methods for eigenvalue computation are closely related. Remarks on this
relationship were previously presented in [5]. In particular, we show that the process
of counting sign changes in the Sturm sequence of (1.2) is equivalent to the computatior
of an “index function” I(A) that is obtained by solving the initial value problem by
a shooting method. The index function may then be employed to produce a bisectior
algorithm using the shooting method. This provides a systematic procedure for mode
location without the requirement of an initial guess. This analysis gives a generalizatior
of the Sturm procedure to shooting methods independent of the discretization. Ir
addition, we extend this indexing procedure to a nonlinear eigenvalue problem tha
occurs in convected acoustic propagation thus generalizing the Sturm sequence pro
cedure to the corresponding algebraic eigenvalue problem in which the eigenvalu
parameter occurs nonlinearly.

Finally, we show how the present indexing may be extended to eigenvalue problem:
such as (1.1) where the boundary condition at z=1 is replaced by an impedanc
condition. Such impedance conditions occur, for example, in ocean acoustics wher
the ocean’s bottom is modeled as a fluid or elastic half-space.

2. The index function. For the algebraic problem (1.2) the index function i
obtained by counting sign changes in the Sturm sequence of the matrix ul —A. I
addition, when u is an eigenvalue of A, the Sturm sequence generates the eigenvectors
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as we have mentioned in § 1. However, when u is not an eigenvalue the {¢;} give the
sequence of values that correspond to solving (1.3) by shooting, using the three-point
approximation to the second derivative and the initial condition ¢'(0) = a such that
¢, =1. Then the shooting method generates the value ¢, from two preceding values
¢, and ¢,_, by the formula

¢I=(#_al)¢i—l_¢l—2’ i=2,3,"',N—l,

(2.1a)
60 =0, ay=1,
where a; are defined for i=1,2,---, N by
(2.1b) a;= -2+ h’k*n’(z,).

Since the shooting recursions (2.1) and the Sturm sequence are identical (except at
the terminal point) the Sturm method can be considered as a shooting method that
employs an index function based on the number of zeros in a “trial eigenfunction” to
locate a mode. ‘ 2

In terms of the shooting method the Sturm sequence index function is given in
Theorem 1, which we now state.

THEOREM 1. The number of eigenvalues of (1.1) greater than A is given by the index
Sfunction I(X), which is defined by

1 if,(e)1) <0,
0 i (1)b)1)20.

Here ¢,(z) is the function obtained by integrating (1.1a) from z=0 to z =1 with
the initial conditions ¢,(0) =0 and ¢7(0) = 1. The result given in Theorem 1 is stronger
than the interlace property of Sturm-Liouville problem eigenfunctions because the
index function is defined for values of A that are not part of the spectrum. At a value

(2.2 I(A) = the number of zeros of ¢,(z) in (0, l]+{

of A between two eigenvalues, the index function gives the number of eigenvalues

greater than A. . ;
The proof of Theorem 1 is given in [8] for the following more general eigenvalue
problem which occurs in acoustic propagation in a moving medium:

(2.3) [677a(z,A))+b(z,A)0 =0, ¢(0)=0, ¢'(1)/a(1,1)=0,

where a(z, 1) and b(z, A) are defined by
- 2

(2.4) a(z,A)=[k—au(2)]?, b(Z’A)EnZ(Z)_a(z,A)’
and u(z) is a specified flow velocity. The analysis contained in [8] also applies to
general a(z; A) and b(z; A) provided both of these functions are monotonically increas-
ing or decreasing functions of A within the A-interval of interest. We observe that (2.3)
is a nonlinear eigenvalue problem since the eigenvalue parameter A occurs nonlinearly.
The proof of the theorem follows from suitable comparison and oscillation theorems
for ordinary differential equations, as we show in [8] and [9]. However, special attention
must be given to the terminal boundary condition, as we demonstrate in § 3.

The Sturm sequence method has been extended to algebraic eigenvalue problems
of the form Ax = ABx, where A and B are symmetric matrices and B is positive definite.
To our knowledge it has not yet been extended using algebraic techniques, to eigenvalue
problems which are obtained from differencing (2.3). Thus, the index function of
Theorem 1 can be used to generalize Sturm sequencing to these more complicated
algebraic eigenvalue problems via the shooting method.
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We observe that the index function of Theorem 1 was derived for the continuous
differential eigenvalue problem. However, the index function is determined numerically
by shooting. Thus, sufficiently small step sizes are required in the numerical integration
so that the numerical index function is calculated accurately. In actual applications
“coarse” step sizes may be adequate.

The Sturm sequence method and hence the index function procedure using
shooting provide stable procedures for isolating the eigenvalues. However, the res ulting
calculation of the eigenfunctions may be unstable, as is well known. Then the eigenvec-
tors can be computed from the corresponding algebraic system by inverse iteration.

To make the relationship between finite-difference and shooting methods trans-
parent we have used the same simple discretization in both approaches. In the shooting
method a simple integration is used and applied directly to the second-order equations.
The computational identity is preserved for the more sophisticated fourth-order
Numerov’s scheme which is also employed in shooting solutions of Sturm-Liouville
problems. In addition, these discretizations of the second-order problem may be
obtained by a discretization of an equivalent system of two first-order equations. Other
implementations of the shooting method such as one employing variable step Runge-
Kutta do not lend themselves to the present interpretation. However, Theorem 1 can
still be used in a bisection algorithm for mode location.

3. Impedance conditions. In many physical problems the simple boundary condi-
tion ¢'(1) = 0 inadequately describes the physics at z = 1. More sophisticated modeling
may lead to the impedance condition

(3.1) F)e(1)+g(1)e'(1)=0,

where f(A) and g(A) are “prescribed” functions of the eigenvalue parameter. The
differential eigenvalue problem then consists of the differential equation such as 1)
or, more generally, the differential equation in (2.3), and the boundary conditions
#(0) =0and (3.1). In general, this eigenvalue problem and the corresponding algebraic
eigenvalue problem depends nonlinearly on A. We now show how to use the index
function I(A) to isolate the spectrum for a special class of impedance boundary
conditions, although the procedure is applicable to a more general class.

For such problems, the point z=1 is not a “physical” boundary, but it is an
interface separating two different media. For example, in ocean acoustic wave propaga-
tion the ocean bottom z=1 is an interface separating the water from the sediments
and rocks of the earth’s mantle, which occupy the region z> 1. This region has been
modeled, for example, as an acoustic medium, an elastic medium, or as a porous
elastic medium; see, for example, [7] and references given therein. For example, we
consider the differential equation in (1.1a) to apply for 0<z <o, such that n(z)=1
for 1 <z <o, and seek eigenfunctions which -0 as z - co. That is, we seek to determine
only the discrete spectrum of the infinite domain problem. In addition, at z=1, ¢
must satisfy the interfacial conditions that ¢ and ¢' are continuous. We observe that
n(z) need not be continuous at z=1.

For an infinite domain, I(A) is the number of zeros of és(z; A) in (0,00). We
recall that the function ¢,(z) is obtained by forward integration from z = 0 and satisfies
the boundary condition at z=0. The number of zeros in (0, 1] is actually determined
by a numerical integration over that interval. Since n(z)>1forz>1, ¢,(z) is given by

(3.2) ¢(z)=Ae "+ Be”
where y=vA%~k* and A?> k? for the discrete spectrum. Requiring continuity of ¢






