NUMERICAL METHODS OF ACOUSTIC MODELING
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ABSTRACT

Computer modeling of the acoustic field in the ocean is at present accomplished
using principally four types of models: 1) ray tracing, 2) normal modes, 3) FFP (fast-
field program) and 4) the PE (parabolic equation). The diversity of models stems
from the need to efficiently cover low to high frequencies, range-independent and range-
dependent environments, and acoustic vs. elastic bottom types. In general, the choice
of model involves trade-offs between accuracy, run time and ease of use. Present efforts
are leading to models which provide full three-dimensional images of the acoustic field
including effects of bottom variation due to seamounts, continental slope, etc., as well
as oceanographic features such as fronts and eddies. While in the past most model
work has been done for tonal (narrowband) signals, models which provide time-domain
results for broadband and transient signals are also emerging. We briefly survey the
various models and their present capabilities.

INTRODUCTION

Ocean acoustic models have been a primary beneficiary of the exponential increase in
computing power which has occurred over the last 20 years or so. The early ray models
have evolved from treating simple stratified environments to where they are now rou-
tinely used for range-dependent problems with bathymetric features such as seamounts
and continental slopes as well as oceanographic features such as fronts and eddies. Nor-
mal mode models were originally constructed for simple two-layer environments (the
Pekeris waveguide) and modified to allow arbitrary numbers of layers.

A useful starting point for underwater acoustics problems is the Helmholtz equation
(or reduced wave equation). In two-dimensions it reads as follows
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where ¢(r, z) is the ocean sound speed as a function of range and depth. In addition, w
is the circular frequency of the source which is located at the range/depth coordinate
(7s,25). The object is to solve for the response of the channel to the source, that is to
solve for the acoustic pressure p(r, z).

In principle it is straightforward to solve such an equation using, for instance, stan-
dard finite difference techniques. In practice, this is almost never done. The finite
difference schemes require 6-10 points per wavelength so that a modest problem of 50
km in range and 5 km in depth would require a grid of around 10® points for a 10 Hz
source. By present day computer standards this problem is completely intractable.

For this reason a number of approximations have been introduced leading to prin-
cipally four different kinds of models: 1) Ray tracing, 2) FFP (fast field program) 3)
Normal mode, and 4) PE (parabolic equation). In the following sections we will briefly

describe each of these approaches in terms of both their mathematical basis and domain
of applicability.
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RAY THEQRY

Ray-based models have been used for many years in underwater acoustics. In the
early 60’s virtually all modeling was done using either normal modes or ray tracing and
primarily the latter. Today, however, ray tracing codes seem to have fallen somewhat
out of favor in the research community. The problem being that the inherent (high
frequency) approximation of the method leads to somewhat coarse accuracy in the
results. On the other hand, ray methods still enjoy a strong following in the operational
environment where speed is a critical factor, and environmental uncertainty poses much
more severe constraints on the attainable accuracy.

To obtain the ray equations, one seeks a solution of the Helmholtz equation of the
following form:

: hd 1
p(r ) = ™3 Al 2) ——, (2)
e (zk)) .
where k = w/cq and ¢ is a reference sound speed. Substituting into the Helmholtz
equation one obtains an infinite sequence of equations for the functions ¢(r,z) and

Aj(r,z):

(Vo) = —&/c(rz), - (3)
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The equation for ¢(r,z) is known as the eikonal equation while the equations for 4;
are known as the transport equations. The eikonal equation is solved by introducing
a family of curves (rays) which are defined by being perpendicular to the level curves
(wavefronts) of ¢(r, z). One finds that the rays satisfy:
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where (r(s),z(s)) is the trajectory of the ray in the range-depth plane and (p(8),¢(3))
is the local tangent vector to the ray. Along such a ray, the phase function @(r,z) is
given by a simple integral: :

Co

é(s) = /0 el (3)

In addition, it turns out that Aq(r, z) also satisfies a simple differential equation along
the ray. In essence, this equation states that the amplitude decays in proportion to the
cross-section of a ray tube. Higher order terms in the sequence Aj(r,z) are generally
not calculated in ray codes. Neglecting these terms is justified when the frequency is
sufficiently high, since for large k the remaining terms 4;/(ik)’ in Eq. (2) go to zero.
Unfortunately, it is difficult to predict a priori what constitutes a ‘sufficiently high’
frequency. (A more complete discussion of ray theory may be found in Ref. (1).)

As a simple example, we consider a deep-water scenario with a source located at
depth z, = 100 m. The particular sound speed profile and corresponding ray trace are
shown in Fig. 1. The rays are obtained by solving Eqns. 7 using a simple integrator.
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Figure 1: Sound speed profile and ray trace for a deep-water problem

For clarity the different classes of ray paths have been plotted using solid (refracted-
refracted), dashed (surface or bottom bounce) and dotted (surface and bottom bounce)

lines. The refracted-refracted rays generate the familiar convergence zone pattern with
energy cycling up and down the channel.

FAST FIELD PROGRAM

The assumption that the environment is range-independent or stratified leads to a
great simplification of the governing equations. In essence the dimension of the problem

is reduced by one. Starting with the Helmholtz equation given in Eq. (1), one applies
a Fourier-Bessel transform: '

Bk, 2) = [ p(r, 2)Jo(kr)rdr, (9)
which leads to: B
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where for simplicity we have used a pressure release surface boundary condition and a
perfectly rigid bottom boundary condition at the depth z = D. The solution of this

boundary value problem yields p(k, =) and the final pressure is then computed using the
inverse Fourier-Bessel transform as :

p(r,z) = /0°° B(k, 2)Jo(kr)kdk. (11)

This is the so-called spectral integral representation of the solution.

One can show that the kernel, p(k,z) decays rapidly to zero for k > K where
K = maz(w/c(z)). Thus, the integral need only be performed over the truncated
interval [0, K]. However, the calculation of p(r, z) requires the evaluation of this integral
for every single point in range and depth of interest. Fortunately, a trick exists for

performing these integrals efficiently. One uses the asymptotic approximation to the
Bessel function to obtain,

eitr/4

K .
p(r,z)zﬁ;;/o plk, 2)Vke™ dk. (12)
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Figure 2: FFP transmission loss for the deep-water problem (50 Hz source)

This has the form of a Fourier transform and can be efficiently evaluated by an FFT.
In summary, the procedure is to solve Eq. (10) for a number of equally spaced k-
values to obtain a Green’s function, p(k,z). This discretely sampled Green’s function
is then transformed using an FFT to obtain the acoustic pressure versus range.
Methods based on the spectral integral representation have been around for many
years. The FFP approach, distinguished by its use of the FFT to calculate the integral
was originally suggested by Marsh and extended by DiNapoli (2) in the early 70’s.
Today there are several implementations of FFP codes with numerous extensions over
the ‘bare-bones’ model described above (see for instance, Ref. (3) ). This includes the
capability of handling elastic media, interfacial roughness and impulsive sources.

Returning to our previous deep water example, we display the transmission loss plots
obtained by an FFP code in Fig. 2. (The transmission loss is 20log,o(47|p(r, z)|)).
‘Note the Lloyd mirror pattern which emerges in the near field due to:the interference
of surface image and direct ray paths. In contrast to the ray solution, the FFP code
yields a result which is essentially exact. Starting from the Helmholtz equation for a
stratified medium, the only additional approximation is that of using the asymptotic
approximation to the Bessel function. This approximation turns out to induce negligible
errors beyond a wavelength or so from the source.

NORMAL MODES

Normal mode methods have been widely used for years in underwater acoustics. An
early reference, which is widely cited is due to Pekeris (4) who developed the theory
for a simple two-layer model of the ocean. Today there are literally dozens of normal
mode codes which allow the ocean sound speed profile to be included and in some cases
viscoelastic effects in the ocean sub-bottom.

The derivation of the governing equations is straightforward. Again one begins with
the Helmholtz equation and seeks a solution as a sum of normal modes:

Pr ) = 3 )Ry (r). (13)

Substituting the above form into the Helmholtz equation one obtains:

L (2 ki, = 0,
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- 4;(0) =0, %(D) = 0, (14)
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Figure 3: Plots of selected modes for the deep-water problem
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Figure 4: Normal mode transmission loss for the deep-water problex}l (50 Hz source)

which is identical to the FFP equation of Eq. (10) apart from lacking the forcing term
on the right hand side. The above equation has an infinite number of solutions which
are like modes of a vibrating string. The modes are characterized by a mode shape
function u;(z) and a horizontal Propagation constant k; (analogous to a frequency of
vibration).

The range functions, R;(r) are found to satisfy,

18, OR,; 6 .
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r

which has the solution Rj(r) = &u_,-(:,)H((,l)(kjr). Putting this all together, one finds
that,

> ui(z)ui(2)HY (kjr), (16)
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or, using the asymptotic approximation to the Hankel function,
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In order to apply the method to the deep-water problem, one begins by solving for
the modes of Eq. (14) which can be done using standard finite difference techniques.
Plots of selected modes are shown in Fig. 3. In general, there are an infinite number of




modes and the mode sum must be truncated. For this calculation we include some 200
modes.

The next step is to perform the sum indicated by Eq. (17) to obtain the transmission
loss. This result is shown in Fig. 4. The normal modes combine constructively and
destructively to reproduce the pattern of convergencé zones separated by shadow zones.

The normal mode result is essentially exact beyond the first 50 km or so, a figure
which depends on the number of modes that are included in the solution. In the near-
field the FFP solution provides a more precise result since the normal mode series
is truncated and neglects steep angle ray paths. The advantage of the normal mode
approach is that the far-field solution can be calculated very efficiently. Basically, the
cost of an FFP solution increases in proportion to range due to the need of sampling
the kernel more finely for greater ranges. The opposite is true for a normal mode code:
in the near-field more and more modes must be computed. Beyond some intermediate -
range, say typically 10 water depths, the normal mode solution becomes more efficient.

PARABOLIC EQUATION MODELING

The parabolic équation was introduced in underwater acoustics in 1973 by Tappert
and Hardin. One begins by seeking a solution of the Helmholtz equation in the form.

p(ryz) = u(r, 2)HS) (kor), . (18)
where ko is a reference wavenumber. Substituting into Eq. (1) one finds,
Upr + 2ikou, + ki(n? — 1)u + u.. = 0. (19)
At this point, one discards the first term to obtain the parabolic equation:
n2 - ]. | i i ) Tt e '
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This latter step is justified assuming weak range-dependence and narrow angle propa-
gation, i.e. when the dominant energy comes from rays propagating nearly horizontally.

The advantage of the parabolic equation over the original Helmholtz equation is that
the PE can be solved by a straightforward marching in range which requires much less
computational effort. From a numerical point of view, this range marching is typically
implemented using either standard finite difference techniques (5) or using a fast Fourier
transform as in the so-called ‘split-step’ method (6).

In problems with strong range-dependence the PE method is generally the method
of choice. The PE method however has several approximations. These approximations
introduce errors which increase as the corresponding ray angle increases so that the PE
1s a narrow angle solution. A great deal of work has been done in the last 10 years or so
to construct higher-angle PE’s. This increased accuracy generally comes at the expense
of computer time.

As an example of the capabilities of PE models we modify our deep-water problem
by injecting an idealized seamount into the problem. Referring to the plot in Fig. 5
we observe that the convergence zone path essentially bounces off the seamount and is
displaced in range and distorted as a consequence of this interaction. Range-dependent
extensions of some of the other models (range-dependent ray theory, adiabatic or coupled
modes, coupled FFP) would also be capable treating this problem however at least for
the research environment the PE provides the best compromise between accuracy and
efficiency for such a problem.
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Figure 5: PE transmission loss for the deep-water problem (50 Hz source)

CONCL.USIONS

In the space of so short a paper, it is difficult to do justice to the various models.
We mention in passing, that most of these models have been extended to elastic, range-
dependent problems and to treat broadband or transient source functions. In addition,
full 3D models are emerging largely as a consequence of increased computer power. For
a more complete survey we refer the reader to Ref. (7).
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