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RAPID THREE-DIMENSIONAL OCEAN ACOUSTIC MODELING
OF COMPLEX ENVIRONMENTS

W.A. Kuperman, M. B. Porter, I. S. Perkins and A. A. Piacsek !
Naval Research Laboratory, Washington, DC 20375

A wave-theory based technique for the rapid computation of prop-
agation loss over a wide geographical area with a complex 3D environ-
‘ment has been developed. The method relies on an adiabatic normal
mode approach that reduces the wave equation to a set of coupled equa-
tions in the depth variable z and the plan variables (z,y). A unique
feature of the technique which greatly speeds the computation, is the
precalculation of an impedance surface that replaces the oceanograph-
ically stable portion of the sound-speed profile and the geo-acoustic
structure /of the ocean bottom, both derived from archival informa-
tion,

Introduction

The computational issues central to three-dimensional (3D) ocean
acoustic modeling have been highlighted in previous papers [1,2,3].
Much of these issues arise from the "marching” nature of the algo-
rithms employed. That is, different source/receiver configurations rel-
ative to the environment require recomputation of the total acoustic
wave equation solution. Here we briefly present an approximate tech-
nique [4] based on mode theory to rapidly compute the acoustic field
for complex 3D ocean environments in a nonredundant fashion. The
primary goals of this research are to investigate the graphical patterns
that emerge for complex environments where the acoustic field reflects
or "images” the oceanography and topography and to provide a method
to generate acoustic "data” for sophisticated numerical experiments.
Furthermore, it is our belief that these 3D representations using color
graphics {4] to display and convey complex ocean acoustic phenomena
will provide hints and an impetus for developing new approaches to

. the 3D modeling problem.

Traditionally ocean acoustic modeling has been done assuming a
cylindrically symmetric environment. On the other hand, 3D varia-
tion of sound speed, bathymetry and bottom type is common in the
ocean. Seamounts and mesoscale eddies are just two examples of fea-
tures which disturb the cylindrical symmetry of the problem. With
regard to such features, we make the following observations: topo-
graphical features are stationary and even volume medium effects via
the sound speed profile are unchanging below certain depths known to
oceanographers. The 3D ocean acoustic environment is then relatively
benign to a great extent which in itself suggests that we somehow seek
a computational technique which takes advantage of the stability of the
environment. An adiabatic normal mode procedure is used as a basis
to meet the criteria of taking advantage of the local stability of the
medium in order to contruct 3D "acoustic images™ of the environment.
Horizontally, we grid the ocean environment in terms of its local acous-
tic eigenvalues and normal modes. We further take advantage of the
deep stability of the ocean in the mode calculation by precalculating
an impedance {unction by numerically integrating the local depth nor-
mal mode equation up from the basement to a surface below which the
oceanography is stable. This complex impedance function at the upper
boundary of the stable part of the water column is, then, a composite of
the local bottom type, bottom depth and complete sound speed profile
below this impedance surface. The stored horizontal grid of impedance
functions then represents the precomputed part of a 3D acoustic wave
equation solution descriptive of a large ocean region which is computa-
tionally "shallow” since it is now bounded in depth by the impedance
surface. The local modes, if not already known (for example if the up-
per profile is known we take the impedance surface to be the pressure
release ocean surface and then we might as well just store the modes),
are finally obtained by "shooting” down from the ocean surface tq the
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impedance surface. For mild horizontal variability, we construct the
3D acoustic field by a straightforward adiabatic mode computation us-
ing the gridded modal information. For stronger horizontal variability,
we use a horizontal grid of the eigenvalues for each mode to construct a
horizontal modal sound speed structure in order to calculate the hori-
zontally refracted normal mode field using a Gaussian beam algorithm
5.

N The most important aspect of this procedure is that most of the
computation is independent of the specific source/receiver configura-
tions allowing changing environment relative to source/reciever con-
figuration to be recalculated with minimum effort as opposed to the
total recalculation necessary in any marching algorithm. Speed up
over conventional marching methods is then accomplished by using this
"spreadsheet” type approach of manipulating wave equation precalcu-
ations. The speed up is particularly effective in the majority of cases
where horizontal refraction computations (1] need not be performed.

Formulation

Our starting point is the Helmholtz equation in three-dimensions.
We have

w’ °
Vip+ m? = §(z)8(y)8(z - 2.). (1)
Here, w is the circular frequency of the source, c(z,y, z) is the ocean
sound speed and p(z,y, z) is the acoustic pressure. The normal mode
solution obtained when ¢(z,y,z) = ¢(z), i.e. the case of a stratified
cylindrically symmetric ocean is well know and is extended to mild
range dependence using the adiabatic approximation.

Adiabatic mode equations

The adiabatic range-dependent normal mode result is [4]

m o hilr)er
p(r,z) = Z u;(2,50)u;(z;7) , )
i=1 k; r)r
where u;{z;r) satisfies,
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g0+ (G~ Wiz =0, (3)
wi(0i7) + 2T(k) 25 (0;r) = o, ()
u;(D;r) + ZB(k})%(D; r)=0. (5)

Thus, the modal sum involves the local modes uj(z;r), that is the
modes calculated using the sound speed profile at the receiver range,
r. Similarly, the mode excitation coefficients, u;(z,; 0) use the modes
calculated using the sound speed profile at the source range, r = 0.

The 3D adiabatic mode equations

The above solution makes use of modes (u;j(z;r),k;(r)) as if they
were available at a continuum of range points. In practice, the com-
putation of modes can be somewhat computationally expensive and
it is desirable to compute local modes at as few range slices as pos-
sible. Thus, the environment is subdivided at points r = ru,m =
1,...yNpros where Np,,; denotes the number of profiles. Then one
solves for a set of modes at each r,, and uses linear interpolation to
construct modes at ranges which lie bet ween those r,,, where the modes
have been calculated. )




We may now describe the Nx2D gencralization for a 3D environ-
ment. Basically, the procedure is to solve the 3D problem on N az-
imuthal slices using range-dependent (adiabatic) mode theory. Each
azimuthal slice is treated as an independent modal problem as if each
slice of the sound speed profile and bathymetry profile were derived
from a cylindrically symmetric problem. This approach has also been
applied in parabolic equation modeling [1]. The normal mode result

is,
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du;

us(Din,8) + 22 (k)2 (D3, 0) = 0. (9)
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incident vertical plane.

The inclusion of horizontal refraction into a modal formulation has
been previously discussed by Pierce (2] and Weinberg and Burridge
{3]. Our approach [4], however, is substantially different; we employ
Gaussian beam tracing (5] to solve the lateral wave equation which
eliminates both the problem of finding eigenrays and the problem of
including caustic or shadow-zone corrections. The Gaussian beam ap-
proach applied to the horizontal refraction problem is discussed in de-
tail in (4]. Essentially, the horizontal field of each modal wavenumber is
translated into a horizontal sound speed field which defines the Gaus-
sian beam environment for each mode.

Precalculations for the mode computation

Since speed of computation is central to 3D modeling, we have also
found it advantageous to reduce the solution of the modal equations
(Eqns. 7 and 9) to a "precalculated” part corresponding to the local
unchanging part of the ocean and a final mode computation which in-
terfaces the precalculated modal information with a mode computation
involving the latest update to the upper part of the water colurmn. The
precalculated modal information will be in the form of an impedance
function obtained by integrating the eigenvalue equation (parametrized
by horizontal wavenumber) from the basement to the uppermost sta-
ble region of the water column. Therefore, for calculations in which.
the local environment will itself be variable, it will be the impedance
function that will be stored at the above mentioned nodes rather than
modes thereby allowing for extremely rapid updating of the local en-
vironment which is ultimately included in the 3D computation. This
procedure eliminates redundant calculation in many cases where the
sound speed, for example, is changing in only the upper few percent
of the water column. This procedure is'illustrated in Fig. 2 and the
details of the construction of this surface, whose depth is determined
by the local bathymetry and oceanography, is presented in detail in
[4]. The total numerical eigenvalue algorithm that is used is based on
the work of Porter and Reiss [6].
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To demonstate the wide area capability of the procedure presented
in this paper we present results for sound propagation in a "Generic ’
Sea” which by construction contains three-dimensional variability in
the water column in the form of a warm core eddy and bottom structure
in the form of a seamount and a continental shelf.

Figure 1 is the top view of the grid structure of a "Generic Sea”
containing features of a 3D range-dependent environment. We have
arbitrarily picked a 400 km square to compute the three dimensional
acoustic field. Contained in this ocean is a range indepenent deep water
region of 5000 m depth, a continental slope rising to a shelf of 1000 m
depth, a seamount and a "warm core” eddy overlapping the seamount
of radius 2007 km as depicted by the series of sound speed profiles in
Fig. 2.

The N x 2D computation for this environment is shown in Fig. 3
(The gray-scale in Fig. 6 refers to Figs. 3-5.) and can be interpreted
in two ways (Ref. {4] presents Figs. 3-5 in color contours where the
structure of the acoustic field is much more clearly evident.):

1. It is a contour of transmission loss for a source at range zero
and depth 100 m over a receiver plane at depth 160 m. Figure 4
which is a vertical slice of the three dimeansional field emanating
due east from the center point of Fig. 3 plane shows clearly that
the outer white rings are convergence zones and the two inner
white rings are from bottom-bounce paths.

2. Conversely, Fig. 3 can be interpreted as a contour of transmission
loss to a receiver at the ceater point (depth 100 )m from sources
at all points in the plane at depth 160 m. For example, due east
from the center at range 200 km, the white ring indicates that
a source at depth 160 m will propagate by a convergence zone
path to the center receiving point.

The 3D computation with horizontal refraction is shown in Fig. .5
where we see the additional shadowing beyond the seamount caused
by the acoustic paths bending away from the sides of the seamount.
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Figure 2: Impedance surface. The ocean is taken to be stable below the ¥ P s . S W R
impedance surface. The depth of the surface is determined by the local i
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eters: bottom depth, bottom type, sound speed profile up to the impedance

surface. . . .. .
Figure 5: Generic Sea. Transmission loss contours over the same tegion as in

Fig. 3 but with horizontal refraction included.
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Figure 6: Gray-scale levels used in all the contour plots.
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A combination of displays such as those in Figs. 3 and 4 is, in
essence a 3D acoustical "image” of the ocean. It is also clear that
these figures demonstrate the capability of the technique to produce

Riabdddy X numerical acoustical "data” for a large oceanographic area. Excluding
Y precalculation time, snapshots of the acoustic field can be computed
-200 -100 ; . :
in about 3 minutes on a VAX 11/780 for a particular source loca-
RANGE (km) tion. A remaining issue is that of the need for mode coupling, i.e., the
shortcomings of the adiabatic approximation. While we have not yet
included this feature, it is straightforward to do so. At this point, il
is not clear whether (or in which cases) horizontal refraction or mode
coupling is more important.

Figure 3: Generic Sea. Contours of transmission loss for the environment
imposedon the grid in Fig. 1.
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Figute 4: Generic Sea. Contours of transmission loss for a vertical slice of the
environment due east of the center of Fig. 3. °



